UP Board Solutions for Class 11 Physics Chapter 14 Oscillations (दोलन)

In this chapter, we provide UP Board Solutions for Class 11 Physics Chapter 14 Oscillations (दोलन) for Hindi medium students, Which will very helpful for every student in their exams. Students can download the latest UP Board Solutions for Class 11 Physics Chapter 14 Oscillations (दोलन) pdf, free UP Board Solutions Class 11 Physics Chapter 14 Oscillations (दोलन) book pdf download. Now you will get step by step solution to each question. Up board solutions कक्षा 11 गणित पीडीऍफ़

UP Board Solutions for Class 11 Physics Chapter 14 Oscillations (दोलन)

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.
नीचे दिए गए उदाहरणों में कौन आवर्ती गति को निरूपित करता है?
(i) किसी तैराक द्वारा नदी के एक तट से दूसरे तट तक जाना और अपनी एक वापसी यात्रा पूरी करना।
(ii) किसी स्वतन्त्रतापूर्वक लटकाए गए दण्ड चुम्बक को उसकी N-S दिशा से विस्थापित कर छोड़ देना।
(iii) अपने द्रव्यमान केन्द्र के परितः घूर्णी गति करता कोई हाइड्रोजन अणु।
(iv) किसी कमान से छोड़ा गया तीर।
उत्तर-
(i) यह आवश्यक नहीं है कि तैराक को प्रत्येक बार वापस लौटने में समान समय ही लगे; अत: यह गति आवर्ती गति नहीं है।
(ii) दण्ड चुम्बक को विस्थापित करके छोड़ने पर उसकी गति आवर्ती गति होगी।
(iii) यह एक आवर्ती गति है।
(iv) तीर छूटने के बाद कभी-भी वांपस प्रारम्भिक स्थिति में नहीं लौटता; अत: यह आवर्ती गति नहीं है।

प्रश्न 2.
नीचे दिए गए उदाहरणों में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परन्तु सरल आवर्त गति निरूपित नहीं करते हैं?
(i) पृथ्वी की अपने अक्ष के परितः घूर्णन गति।।
(ii) किसी U-नली में दोलायमान पारे के स्तम्भ की गति।
(iii) किसी चिकने वक्रीय कटोरे के भीतर एक बॉल बेयरिंग की गति जब उसे निम्नतम बिन्द से कुछ ऊपर के बिन्दु से मुक्त रूप से छोड़ा जाए।
(iv) किसी बहुपरमाणुक अणु की अपनी साम्यावस्था की स्थिति के परितः व्यापक कम्पन।
उत्तर-
(i) आवर्ती गति परन्तु सरल आवर्त गति नहीं।
(ii) सरल आवर्त गति।
(iii) सरल आवर्त गति।
(iv) आवर्ती गति परन्तु सरल आवर्तः गति नहीं।

प्रश्न 3. चित्र-14.1 में किसी कण की रैखिक गति के लिए चार x-t आरेख दिए गए हैं। इनमें से कौन-सा आरेख आवर्ती गति का निरूपण करता है? उस गति का आवर्तकाल क्या है? (आवर्ती गति वाली गति का)।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3

UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3.1
उत्तर-
(a) ग्राफ से स्पष्ट है कि कण कभी भी अपनी गति की पुनरावृत्ति नहीं करता है; अत: यह गति, आवर्ती गति नहीं है।
(b) ग्राफ से ज्ञात है कि कण प्रत्येक 2 s के बाद अपनी गति की पुनरावृत्ति करता है; अतः यह गति एक आवर्ती गति है जिसका आवर्तकाल 2 s है।
(c) यद्यपि कण प्रत्येक 3 s के बाद अपनी प्रारम्भिक स्थिति में लौट रहा है परन्तु दो क्रमागत प्रारम्भिक स्थितियों के बीच कण अपनी गति की पुनरावृत्ति नहीं करता; अत: यह गति आवर्त गति नहीं है।
(d) कण प्रत्येक 2 s के बाद अपनी गति को दोहराता है; अत: यह गति एक आवर्ती गति है जिसका आवर्तकाले 2 s है।

प्रश्न 4. नीचे दिए गए समय के फलनों में कौन (a) सरल आवर्त गति (b) आवर्ती परन्तु सरल आवर्त गति नहीं, तथा (e) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर है)
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 4
उत्तर-
(a) दिया गया फलन x = sin ωt – cos ωt
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 4.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 4.2
(e) तथा (f) में दिए गए दोनों फलन न तो आवर्त गति निरूपित करते हैं और न ही सरल आवर्त गति निरूपित करते हैं।

प्रश्न 5.
कोई कण एक-दूसरे से 10 cm दूरी पर स्थित दो बिन्दुओं A तथा B के बीच रैखिक सरल आवर्त गति कर रहा है। A से B की ओर की दिशा को धनात्मक दिशा मानकर वेग, त्वरण
तथा कण पर लगे बल के चिह्न ज्ञात कीजिए जबकि यह कण
(a) A सिरे पर है,
(b) B सिरे पर है।
(c) A की ओर जाते हुए AB के मध्य बिन्दु पर है,
(d) A की ओर जाते हुए 8 से 2 cm दूर है,
(e) B की ओर जाते हुए से 3 cm दूर है, तथा
(f) A की ओर जाते हुए 8 से 4 cm दूर है।
उत्तर-
स्पष्ट है कि बिन्दु A तथा बिन्दु B अधिकतम विस्थापन की स्थितियाँ हैं तथा इनका मध्य बिन्दु O (मोना), सरल आवर्त गति का केन्द्र है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5
(a) ∴ बिन्दु A पर कण का वेग शून्य होगा।
कण के त्वरण की दिशा बिन्दु A से साम्यावस्था O की ओर होगी; अतः त्वरण धनात्मक होगा।
कण पर बल, त्वरण की ही दिशा में होगा; अत: बल धनात्मक होगा।
(b) बिन्दु B पर भी कण का वेग शून्य होगा।
कण का त्वरण B से साम्यावस्था O की ओर दिष्ट होगा; अतः त्वरण ऋणात्मक होगा।
बल भी ऋणात्मक होगा।
(c) AB का मध्य बिन्दु 0 सरल आवर्त गति का केन्द्र है।
∴ कण B से A की ओर चलते हुए 0 से गुजरता है; अत: वेग BA के अनुदिश है, अर्थात् वेग ऋणात्मक है।
बिन्दु ०पर त्वरण तथा बल दोनों शून्य हैं।
(d) B से 2 cm दूरी पर कण B तथा 0 के बीच होगा।
∴ कण B से A की ओर जा रहा है; अतः वेग ऋणात्मक होगा।
यहाँ त्वरण भी B से O की ओर दिष्ट है; अतः त्वरण भी ऋणात्मक है।
‘बले भी ऋणात्मक है।
(e) ∴ कण-B की ओर जा रहा है; अतः वेग धनात्मक है।
∴ कण A व O के बीच है; अत: त्वरण A से O की ओर दिष्ट है; अत: त्वरण भी धनात्मक है।
बल भी धनात्मक है।
(f) ∴ कण A की ओर जा रहा है; अत: वेग ऋणात्मक है।
कण B तथा O के बीच है तथा त्वरण B से O की ओर (अर्थात् B से A की ओर दिष्ट है; अतः त्वरण ऋणात्मक है।
बल भी ऋणात्मक है।

प्रश्न 6.
नीचे दिए गए किसी कण के त्वरण तथा विस्थापन के बीच सम्बन्धों में से किससे सरल आवर्त गति सम्बद्ध है:
(a) a = 0.7 x
(b) a = -200x²
(c) a = -10
(d) a = 100x³
उत्तर-
उपर्युक्त में से केवल सम्बन्ध (c) में a =-10x अर्थात् त्वरण विस्थापन के अनुक्रमानुपाती है तथा विस्थापन के विपरीत दिशा में है; अत: केवल यही सम्बन्ध सरल आवर्त गति को निरूपित करता है।

प्रश्न 7.
सरल आवर्त गति करते किसी कण की गति का वर्णन नीचे दिए गए विस्थापन फलन द्वारा किया जाता है। x(t) = A cos (ωt + φ) यदि कण की आरम्भिक (t = 0) स्थिति 1 cm तथा उसका आरम्भिक वेग πcms-1 है। तो कण का आयाम तथा आरम्भिक कला कोण क्या है? कण की कोणीय आवृत्ति π-1 है। यदि सरल आवर्त गति का वर्णन करने के लिए कोज्या (cos) फलन के स्थान पर हम ज्या (sin) फूलन चुनें; x = B sin (ωt + α), तो उपर्युक्त आरम्भिक प्रतिबन्धों में कण का आयाम तथा आरम्भिक कला कोण क्या होगा?
हल-
दिया है : कोणीय आवृत्ति ω = r rad s-1, t = 0 पर x = 1 cm
तथा प्रारम्भिक वेग u = πcm s-1
सरल आवर्त गति की समीकरण x = A cos (ωt + φ)
x = A cos (πt + φ)
t = 0 तथा x = 1 रखने पर, 1 = A cos φ ..(1)
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7.1

प्रश्न 8.
किसी कमानीदार तुलां का पैमानी 0 से 50 kg तक अंकित है और पैमाने की लम्बाई 20 cm है। इस तुला से लटकाया गया कोई पिण्ड, जब विस्थापित करके मुक्त किया जाता है, 0.6 s के आवर्तकाल से दोलन करता है। पिण्ड का भार कितना है?
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 8

प्रश्न 9.
1200 Nm-1 कमानी-स्थिरांक की कोई कमानी चित्र-14.3 में दर्शाए अनुसार किसी क्षैतिज मेज से जड़ी है। कमानी के मुक्त। सिरे से 3kg द्रव्यमान का कोई पिण्ड जुड़ा है। इस पिण्ड को एक ओर 2.0 cm दूरी तक खींचकर मुक्त किया जाता है,
(i) पिण्ड के दोलन की आवृत्ति,
(ii) पिण्ड का अधिकतम त्वरण, तथा ।
(iii) पिण्ड की अधिकतम चाल ज्ञात कीजिए।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9
हल-
यहाँ बृल नियतांक k = 1200 न्यूटन-मीटर-1, m = 3 किग्रा; कमानी का अधिकतम विस्तार अर्थात् आयाम a = 2.0 सेमी = 2 x 10-2 मीटर
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9.1

प्रश्न 10.
अभ्यास प्रश्न 9 में, मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति x = 0 है तथा बाएँ से दाएँ की दिशा x-अक्ष की धनात्मक दिशा है। दोलन करते पिण्ड के विस्थापन x को समय के फलन के रूप में दर्शाइए, जबकि विराम घड़ी को आरम्भ (t = 0) करते समय पिण्ड,
(a) अपनी माध्य स्थिति,
(b) अधिकतम तानित स्थिति, तथा
(c) अधिकतम सम्पीडन की स्थिति पर है।
सरल आवर्त गति के लिए ये फलन एक-दूसरे से आवृत्ति में, आयाम में अथवा आरम्भिक कला में किस रूप में भिन्न है ।
हल-
उपर्युक्त प्रश्न में आयाम a = 0.20 मीटर =2 सेमी।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 10

प्रश्न 11.
चित्र-14.4 में दिए गए दो आरेख दो वर्तुल गतियों के तद्नुरूपी हैं। प्रत्येक आरेख पर वृत्त की त्रिज्या परिक्रमण-काल, आरम्भिक स्थिति और परिक्रमण की दिशा दर्शाई गई है। प्रत्येक प्रकरण में, परिक्रमण करते कण के त्रिज्य-सदिश के x-अक्ष पर प्रक्षेप की तदनुरूपी सरल आवर्त गति ज्ञात कीजिए।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 11
हल-
(a) माना वृत्त पर गति करता हुआ कण किसी समय । पर P से स्थिति A में पहुँच जाता है।
माना ∠POA = θ
AB, बिन्दु A से x-अक्ष पर लम्ब है।
तब ∠ BAO = θ
आवर्तकाल T = 2s
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 11.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 11.2

प्रश्न 12.
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तदनुरूपी निर्देश वृत्त का आरेख खींचिएं। घूर्णी कण की आरम्भिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रत्येक प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 12
हल-
(a) दिया है : सरल आवर्त गति का समीकरण x=-2sinleft( 3t+frac { pi }{ 3 } right)
यह गति समय का ज्या (sine) फलन है;
अतः कोणीय विस्थापन, y-अक्ष से नापा जाएगा।
दिए गए समीकरण में t = 0 रखने पर,
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 12.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 12.2
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 12.3

प्रश्न 13.
चित्र-14.7(a) में k बल-स्थिरांक की किसी कमानी के । एक सिरे को किसी दृढे आधार से जकड़ा तथा दूसरे मुक्त। सिरे से एक द्रव्यमान m जुड़ा दर्शाया गया है। कमानी के मुक्त सिरे पर बल F आरोपित करने से कमानी तन जाती है चित्र-14.7 (b) में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान जुड़ा दर्शाया गया है। कमानी के दोनों सिरों को चित्र-14.7 में समान बल F द्वारा तानित किया गया है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 13
(i) दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या है?
(ii) यदि (a) का द्रव्यमान तथा (b) के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए।
हल-
(i) माना कमानी का अधिकतम विस्तार xmax है, तब
चित्र (a)
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 13.1
(b) में-चूँकि इस बार कमानी किसी स्थिर वस्तु से सम्बद्ध नहीं है; अतः दूसरे पिण्ड पर लगे बल का कार्य केवल कमानी को स्थिर रखना है।
अतः विस्तार अभी भी केवल एक ही बल के कारण होगा।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 13.2
(ii) चित्र (a) में माना कि पिण्ड को खींचकर छोड़ने पर, वापसी की गति करता पिण्ड किसी क्षण साम्यावस्था से x दूरी पर है तब कमानी में प्रत्यानयन बल F = -kx होगा।
यदि पिण्ड का त्वरण ‘a है तो F = ma
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 13.3
चित्र (b) में-इस दशा में, निकाय का द्रव्यमान केन्द्र अर्थात् कमानी का मध्य बिन्दु स्थिर रहेगा और दोनों पिण्ड दोलन करेंगे।
इस अवस्था में हम मान सकते हैं कि प्रत्येक पिण्ड मूल कमानी की आधी लम्बाई से जुड़ा है तथा ऐसे प्रत्येक भाग का कमानी स्थिरांक 2k होगा। यदि किसी क्षण, कोई पिण्ड साम्यावस्था से x दूरी पर है तो कमानी के संगत भाग में प्रत्यानयन बल F = -2kx होगा। यदि पिण्ड का त्वरण a है तो
ma = F => ma = -2kx या ।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 13.4

प्रश्न 14.
किसी रेलगाड़ी के इंजन के सिलिण्डर हैड में पिस्टन का स्ट्रोक (आयाम को दोगुना) 1.0 m का है। यदि पिस्टन 200 rad/min की कोणीय आवृत्ति से सरल आवर्त गति करता है तो उसकी अधिकतम चाल कितनी है?
हल-
पिस्टन का आयाम a = स्ट्रोक/2 = 1.0 मी/2 = 0.5 मीटर तथा
इसकी कोणीय आवृत्ति ω = 200 रेडियन/मिनट = (200/60) रे/से = 10/3 रे/से
पिस्टन की अधिकतम चाल umax = aω = 20 = 0.5 मीटर x (10/3) रे/से
=1.67 मी-से-1

प्रश्न 15.
चन्द्रमा के पृष्ठ पर गुरुत्वीय त्वरण 1.7 ms-2 है। यदि किसी सरल लोलक का पृथ्वी के पृष्ठ पर आवर्तकाल 3.5 s है तो उसका चन्द्रमा के पृष्ठ पर आवर्तकाल कितना होगा? (पृथ्वी के पृष्ठ पर g = 9.8 ms-2)
हल-
सरल लोलक का आवर्तकाल T=2pi sqrt { frac { l }{ g } } लोलक विशेष के लिए नियत; अत: T ∝1/√g इसलिए यदि पृथ्वी एवं चन्द्रमा पर गुरुत्वीय त्वरण क्रमशः ge व gm एवं आवर्तकाल क्रमश: Te व Tm हो
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 15

प्रश्न 16.
नीचे दिए गए प्रश्नों के उत्तर दीजिए
(a) किसी कण की सरल आवर्त गति के आवर्तकाल का मान उस कण के द्रव्यमान तथा बल-स्थिरांक पर निर्भर करता है: T=2pi sqrt { frac { m }{ k } } । कोई सरल लोलक सन्निकट सरल आवर्त गति करता है। तब फिर किसी लोलक का आवर्तकाल लोलक के द्रव्यमान पर निर्भर क्यों नहीं करता?
(b) किसी सरल लोलक की गति छोटे कोण के सभी दोलनों के लिए सन्निकट सरल आवर्त गति होती है। बड़े कोणों के दोलनों के लिए एक अधिक गूढ विश्लेषण यह दर्शाता है कि का मान 2pi sqrt { frac { l }{ g } } से अधिक होता है। इस परिणाम को समझने के लिए किसी गुणात्मक कारण का चिन्तन कीजिए।
(c) कोई व्यक्ति कलाई घड़ी बाँधे किसी मीनार की चोटी से गिरता है। क्या मुक्त रूप से गिरते समय उसकी घड़ी यथार्थ समय बताती है?
(d) गुरुत्व बल के अन्तर्गत मुक्त रूप से गिरते किसी केबिन में लगे सरल लोलक के दोलन की आवृत्ति क्या होती है?
उत्तर-
(a) जब दोलन स्प्रिंग के द्वारा होते हैं तो बल नियंताक k का मान केवल स्प्रिंग पर निर्भर करता है। न कि गतिमान कण के द्रव्यमान पर। इसके विपरीत सरल लोलक के लिए बल नियतांक
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 16
कण के द्रव्यमान के अनुक्रमानुपाती होता है; अत: frac { m }{ k }का मान नियत बना रहता है।
इसलिए आवर्तकाल m पर निर्भर नहीं करता।
(b) सरल लोलक के लिए प्रत्यानयन बल F =- mg sin θ
यदि θ छोटा है तो sin θ ≈ θ = frac { x }{ l }
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 16.1
अर्थात् यह गति सरल आवर्त होगी तथा आवर्तकाल 2pi sqrt { frac { l }{ g } }
यदि θ छोटा नहीं है तो हम sin θ ≈ θ नहीं ले सकेंगे तब गति सरल आवर्त नहीं रहेगी; अत: आवर्तकाल 2pi sqrt { frac { l }{ g } } से बड़ा होगा।
(c) हाँ, क्योकि कलाई घड़ी का आवर्तकाल गुरुत्वीय त्वरण के मान में परिवर्तन से प्रभावित नहीं होता।
(d) मुक्त रूप से गिरते केबिन में गुरुत्वीय त्वरण का प्रभावी मान g’.= 0 होगा।
∴ लोलक का आवर्तकाल 2pi sqrt { frac { l }{ g } } अनन्त हो जाएगा तथा आवृत्ति शून्य हो जाएगी।

प्रश्न 17.
किसी कार की छत से l लम्बाई का कोई सरल लोलक, जिसके लोलक का द्रव्यमान M है, लटकाया गया है। कार R त्रिज्या की वृत्तीय पथ पर एकसमान चाल u से गतिमान है। यदि लोलक त्रिज्य दिशा में अपनी साम्यावस्था की स्थिति के इधर-उधर छोटे दोलन करता है तो इसका आवर्तकाल क्या होगा?
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 17
कार जब मोड़ पर मुड़ती है तो उसकी गति में त्वरण, frac { { upsilon }^{ 2 } }{ R } (अभिकेन्द्र त्वरण) होता है। इस प्रकार कार एक अजड़त्वीय निर्देश तन्त्र है। इसलिए गोलक पर एक छद्म बल frac { m{ upsilon }^{ 2 } }{ R } वृत्तीय पथ के बाहर की ओर लगेगा जिसके कारण लोलक ऊर्ध्वाधर रहने के स्थान पर थोड़ा तिरछा हो जाएगा।
इस समय गोलक पर दो बले क्रमशः भार mg तथा अपकेन्द्र बल frac { m{ upsilon }^{ 2 } }{ R } लगेंगे।
यदि गोलक के लिए g का प्रभावी मान g’ है तो गोलक पर प्रभावी बल mg’ होगा जो कि उक्त दो बलों का परिणामी है।।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 17.1

प्रश्न 18.
आधार क्षेत्रफल A तथा ऊँचाई h के एक कॉर्क का बेलनाकार टुकड़ा ρ1 घनत्व के किसी द्रव में तैर रहा है। कॉर्क को थोड़ा नीचे दबाकर स्वतन्त्र छोड़ देते हैं, यह दर्शाइए कि कॉर्क
ऊपर-नीचे सरल आवर्त दोलन करता है जिसका आवर्तकाल T=2pi sqrt { frac { hrho }{ { rho }_{ 1 }g } } है।
यहाँ ρ कॉर्क का घनत्व है (द्रव की श्यानता के कारण अवमन्दन को नगण्य मानिए।)
उत्तर-
द्रव में तैरते बेलनाकार बर्तन के दोलन—माना कॉर्क के टुकड़े का द्रव्यमान m है। माना साम्यावस्था में इसकी l लम्बाई द्रव में डूबी है। (चित्र-14.9)।
तैरने के सिद्धान्त से, कॉर्क के डूबे भाग द्वारा हटाए गए द्रव का भार कॉर्क के भार के बराबर होगा,
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 18
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 18.1
जब कॉर्क को द्रव में नीचे की ओर दबाकर छोड़ा जाता है तो यह ऊपर-नीचे दोलन करने लगता है। माना किसी क्षण इसका साम्यावस्था से नीचे की ओर विस्थापन y है। इस स्थिति में, इसकी y लम्बाई द्वारा विस्थापित द्रव का उत्क्षेप बेलनाकार बर्तन को प्रत्यानयन बल (F) प्रदान करेगा।
अतः F = – A y ρ1 g
यहाँ पर ऋण चिह्न यह प्रदर्शित करता है कि प्रत्यानयन बल F, कॉर्क के टुकड़े के विस्थापन के विपरीत दिशा में लग रहा है; अतः टुकड़े का त्वरण
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 18.2

प्रश्न 19.
पारे से भरी किसी U नली का एक सिरा किसी चूषण पम्प से जुड़ा है तथा दूसरा सिरा वायुमण्डल में खुला छोड़ दिया गया है। दोनों स्तम्भों में कुछ दाबान्तर बनाए रखा जाता है। यह दर्शाइए कि जब चूषण पम्प को हटा देते हैं, तब U नली में पारे का स्तम्भ सरल आवर्त गति करता है।
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 19
सामान्यत: U नली में द्रव (पारा) भरने पर उसके दोनों स्तम्भों व में पारे का तल समान होगा। परन्तु चूषण पम्प द्वारा दाबान्तर बनाये रखने की स्थिति में यदि स्तम्भ में पारे का तल सामान्य स्थिति से y दूरी नीचे है । तो दूसरे स्तम्भ में यह सामान्य स्थिति से y दूरी ऊपर होगा। अत: दोनों । । स्तम्भ में पारे के तलों का अन्तर = 2y, चूषण पम्प हटा लेने पर U नली के दायें स्तम्भ में पारे पर नीचे की ओर कार्य करने वाला बल = 2y ऊँचाई के पारा स्तम्भ का भार = 2y ρga.
जहाँ a = U नली स्तम्भों की अनुप्रस्थ काट का क्षेत्रफल
ρ = पारे का घनत्व; g = गुरुत्वीय त्वरण
अत: बायीं भुजा में पारा ऊपर की ओर चढ़ेगा तथा इस पर कार्य करने वाला प्रत्यानयन बल (जिसके अन्तर्गत यह गति करेगा)
F = -2yρga, दोनों स्तम्भों में पारे के स्तम्भ की ऊँचाई समान होने की स्थिति में यदि ऊँचाई h हो तो U नली में भरे पारे के स्तम्भ की कुल लम्बाई = 2h अतः पारे का कुल द्रव्यमान m = 2h x ρ x a
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 19.1

अतिरिक्त अभ्यास

प्रश्न 20.
चित्र-14.11 में दर्शाए अनुसार V आयतन के किसी वायु कक्ष की ग्रीवा (गर्दन) की अनुप्रस्थ कोर्ट का क्षेत्रफल a है। इस ग्रीवा में m द्रव्यमान की कोई गोली बिना किसी घर्षण के ऊपर-नीचे गति कर सकती है। यह दर्शाइए कि जब गोली को थोड़ा नीचे दबाकर मुक्त छोड़ देते हैं तो वह सरल आवर्त गति करती है। दाब-आयतन विचरण को समतापी मानकर दोलनों के आवर्तकाल का व्यंजक ज्ञात कीजिए (चित्र-14.11 देखिए)। वायु ।
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 20
माना साम्यावस्था में जब गैस का आयतन V है तो इसका दाब P है। साम्यावस्था से गेंद को अल्पविस्थापन x देने पर माना गैस का दाब बढ़कर (P + ∆P) तथा आयतन घटकर V – ∆V रह जाता है। समतापीय परिवर्तन के लिए बॉयल के नियम से ।
P x V = (P + ∆P)(V – ∆V)
अथवा PV = PV – P.∆V + ∆P.V – ∆P.∆V
चूँकि ∆P व ∆V अल्प राशियाँ हैं, अतः ∆P, ∆V को नगण्य मानते हुए 0 = -P ∆V + ∆P.V
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 20.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 20.2

प्रश्न 21.
आप किसी 3000 kg द्रव्यमान के स्वचालित वाहन पर सवार हैं। यह मानिए कि आप इस । वाहन की निलम्बन प्रणाली के दोलनी अभिलक्षणों का परीक्षण कर रहे हैं। जब समस्त | वाहन इस पर रखा जाता है, तब निलम्बन 15 cm आनमित होता है। साथ ही, एक पूर्ण दोलन की अवधि में दोलन के आयाम में 50% घटोतरी हो जाती है, निम्नलिखित के मानों को आकलन कीजिए
(a) कमानी स्थिरांक तथा
(b) कमानी तथा एक पहिए के प्रघात अवशोषक तन्त्र के लिए अवमन्दन स्थिरांक b. यह मानिए कि प्रत्येक पहिया 750 kg द्रव्यमान वहन करता है।
हल-
(a) दिया है : वाहन का द्रव्यमान, M = 3000 kg, निलम्बन का झुकाव x = 15 cm
वाहन में चार कमानियाँ होती हैं; अत: प्रत्येक कमानी पर कुल भार को एक-चौथाई भार पड़ेगा।
अतः . एक कमानी हेतु F=frac { 1 }{ 4 }
F = kx से,
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 21

प्रश्न 22.
यह दर्शाइए कि रैखिक सरल आवर्त गति करते किसी कण के लिए दोलन की किसी अवधि की औसत गतिज ऊर्जा उसी अवधि की औसत स्थितिज ऊर्जा के समान होती है।
उत्तर-
माना m द्रव्यमान का कोई कण ω कोणीय आवृत्ति से सरल आवर्त गति कर रहा है जिसका आयाम a है।
माना गति अधिकतम विस्थापन की स्थिति से प्रारम्भ होती है तब t समय में कण का विस्थापन
x = a cos ωt …(1)
इस क्षण कण की गतिज ऊर्जा ।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 22
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 22.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 22.2

प्रश्न 23.
10 kg द्रव्यमान की कोई वृत्तीय चक्रिका अपने केन्द्र से जुड़े किसी तार से लटकी है। चक्रिका को घूर्णन देकर तार में ऐंठन उत्पन्न करके मुक्त कर दिया जाता है। मरोड़ी दोलन का आवर्तकाल 1.5 s है। चक्रिका की त्रिज्या 15 cm है। तार का मरोड़ी कमानी नियतांक ज्ञात कीजिए। [मरोड़ी कमानी नियतांक α सम्बन्ध J = -αθ द्वारा परिभाषित किया जाता है, यहाँ J प्रत्यानयन बल युग्म है तथा θ ऐंठन कोण है।
हल-
दिया है : चक्रिका का द्रव्यमान m = 10 kg, मरोड़ी दोलन का आवर्तकाल T = 1.5 s,
चक्रिका की त्रिज्या = 0.15 m
केन्द्र से जाने वाली तथा तेल के लम्बवत् अक्ष के परितः चक्रिका का
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 23

प्रश्न 24.
कोई वस्तु 5 cm के आयाम तथा 0.2 सेकण्ड के आवर्तकाल से सरल आवर्त गति करती है। वस्तु का त्वरण तथा वेग ज्ञात कीजिए जब वस्तु का विस्थापन
(a) 5 cm,
(b) 3 cm,
(c) 0 cm हो।
हल-
यहाँ वस्तु का आयाम a = 5 सेमी = 0.05 मीटर, आवर्तकाल T = 0.2 सेकण्ड
∴कोणीय आवृत्ति ω = 2π/T = 2π/0.2 सेकण्ड
= 10π रे/से = 10π से-1
(a) यहाँ विस्थापन y = 5 सेमी = 5 x 10-2 मीटर = 0.05 मीटर
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 24

प्रश्न 25.
किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग ω से घर्षण या अवमन्दन रहित दोलन कर सकता है। इसे जब x0 दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह सन्तुलन केन्द्र से समय t = 0 पर v0 वेग से गुजरता है। प्राचल ω,x0, तथा v0 के पदों में परिणामी दोलन का आयाम ज्ञात कीजिए।(संकेतः समीकरण x = acos (ωt + θ) से प्रारंभ कीजिए। ध्यान रहे कि प्रारम्भिक वेग ऋणात्मक है।)
हल-
माना सरल आवर्त गति का समीकरण ।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 25

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1.
सरल आवर्त गति करते हुए कण का आवर्तकाल होता है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 1
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 1.1

प्रश्न 2.
सरल लोलक का आवर्तकाल दोगुना हो जायेगा जब उसकी प्रभावी लम्बाई कर दी जाती है
(i) दोगुनी।
(ii) आधी
(iii) चार गुनी
(iv) चौथाई
उत्तर-
(iii) चार गुनी ।

प्रश्न 3.
सरल लोलक के आवर्तकाल का सूत्र है T=2pi sqrt { left( l/g right) } जहाँ संकेतों के अर्थ सामान्य हैं। l तथा T के बीच खींचा गया ग्राफ होगा
(i) सरल रेखा
(ii) परवलय
(iii) वृत्त
(iv) दीर्घवृत्त
उत्तर-
(ii) परवलय

प्रश्न 4.
अनुनाद के लिए बाह्य आवर्ती बल की आवृत्ति तथा कम्पन करने वाली वस्तु की स्वाभाविक आवृत्ति का अनुपात होगा।
(i) 1
(ii) शून्य
(iii)1 से अधिक
(iv) 1 से कम
उत्तर-
(i) 1

प्रश्न 5.
अनुनाद की दशा में दोलनों का आयाम
(i) न्यूनतम होता है।
(ii) अधिकतम होता है।
(ii) शून्य होता है।
(iv) इनमें से कोई नहीं
उत्तर-
(i) अधिकतम होता है ।

प्रश्न 6.
एक कण सरल आवर्त गति कर रहा है जिसका आयाम A है। एक पूर्ण दोलन में कण द्वारा चली गयी दूरी है।
(i) 2A
(ii) 0
(iii) A
(iv) 4A
उत्तर-
(iii) A

प्रश्न 7.
किसी सरल आवर्त गति का आयाम a है तथा आवर्तकाल T है। अधिकतम तात्कालिक वेग होगा
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7
उत्तर-
(iii) frac { 2pi a }{ T }

प्रश्न 8.
सरल आवर्त गति करते कण का अधिकतम विस्थापन की स्थिति में त्वरण होता है।
(i) अधिकतम
(ii) न्यूनतम
(iii) शून्य
(iv) न अधिकतम और न न्यूनतम
उत्तर-
(i) अधिकतम

प्रश्न 9.
सरल आवर्त गति करते हुए कण की साम्य स्थिति से दूरी पर स्थितिज ऊर्जा होती है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9
उत्तर-
(ii) frac { 1 }{ 2 } m{ omega }^{ 2 }{ a }^{ 2 }

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
आवर्ती गति से क्या तात्पर्य है?
उत्तर-
जब कोई वस्तु एक निश्चित समयान्तराल में एक निश्चित पथ पर बार-बार अपनी गति को दोहराती है, तो उसकी गति आवर्ती गति कहलाती है।

प्रश्न 2.
सरल आवर्त गति की विशेषताएँ लिखिए।
उत्तर-
(i) यह गति एक निश्चित बिन्दु (कण की माध्य स्थिति) के इधर-उधर होती है।
(ii) कण पर कार्यरत् प्रत्यानयन बल अर्थात् कण का त्वरण सदैव माध्य स्थिति से कण के विस्थापन के अनुक्रमानुपाती होता है।
(iii) प्रत्यानयन बल (अर्थात् त्वरण) की दिशा सदैव माध्य स्थिति की ओर दिष्ट रहती है।

प्रश्न 3.
संरल लोलक के अलावा सरल आवर्त गति के दो उदाहरण दीजिए।
उत्तर-
(1) स्प्रिंग से लटके द्रव्यमान की गति तथा
(2) जल पर तैरते लकड़ी के बेलन को थोड़ा जल में दबाकर छोड़ देने पर उसकी गति।

प्रश्न 4.
सेकण्ड पेण्डुलम क्या होता है?
उत्तर-
वह सरल लोलक जिसका आवर्तकाल 2 सेकण्ड होता है, सेकण्ड लोलक (पेण्डुलम) कहलाता है।

प्रश्न 5.
आवर्तकाल किसे कहते हैं?
उत्तर-
एक दोलन पूरा करने में कोई वस्तु जितना समय लेती है उसे उसका आवर्तकाल कहते हैं। इसे T से प्रदर्शित करते हैं।

प्रश्न 6.
आवृत्ति तथा आवर्तकाल में सम्बन्ध लिखिए।
उत्तर-
आवृत्ति = 1/ आवर्तकाल

प्रश्न 7.
सरल आवर्त गति करते हुए कण का साम्य स्थिति से 5 सेमी की दूरी पर त्वरण 20 सेमी/से² है। इसका आवर्तकाल ज्ञात कीजिए।
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7a

प्रश्न 8.
एक कण सरल आवर्त गति कर रहा है तथा उसका त्वरण overrightarrow { a } =-{ 4pi }^{ 2 }overrightarrow { X } , जहाँ overrightarrow { X } कण की साम्य स्थिति से उसका विस्थापन है। कण का आवर्तकाल निकालिए।
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 8

प्रश्न 9.
सरल आवर्त गति करते हुए किसी कण का आयाम 5 सेमी तथा आवर्तकाल 2 सेकण्ड है। कण के त्वरण का अधिकतम मान निकालिए।
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9

प्रश्न 10.
सरल आवर्त गति का समीकरण y = 2sin 200πt है। दोलन की आवृत्ति का मान ज्ञात कीजिए।
हल-
दिया है, y = 2sin 200πt
सरल आवर्त गति के समीकरण y=asinleft( frac { 2pi }{ T } right) tसे उपर्युक्त समीकरण की तुलना करने पर
frac { 2 }{ T }=200⇒ 2n = 200 left( because frac { 1 }{ T } =n right)
n = 100

प्रश्न 11.
सरल आवर्त गति करने वाले कण का विस्थापन समीकरण लिखिए तथा इसके दो चक्करों के लिए समय-विस्थापन वक्र खींचिए।
उत्तर-
सरल आवर्त गति करने वाले कण का विस्थापन समीकरण
y = asin ωt …(1)
समी० (1) में, ω = 2π/T रखने पर
y=asinleft( frac { 2pi t }{ T } right)
इस समीकरण की सहायता से हमेसरले आवर्त गति करते किसी कण के विस्थापन y तथा समय t है के बीच ग्राफ खींच सकते हैं। इसके लिए हम समीकरण (1) के द्वारा विभिन्न समयों पर विस्थापन ज्ञात करते हैं।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 11

प्रश्न 12.
सरल आवर्त गति करने वाले कण के वेग का सूत्र लिखिए तथा इसका समय-वेग वक्र खींचिए।
या सरल आवर्त गति के लिए समय और वेग में ग्राफ प्रदर्शित कीजिए।
उत्तर-
सरल आवर्त गति करने वाले कण के वेग का सूत्र
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 12

प्रश्न 13.
एक कण ‘r” त्रिज्या के वृत्त की परिधि पर ‘V’ चाल से गति करता है। आधे तथा पूरे आवर्तकाल के बाद इसका विस्थापन ज्ञात कीजिए।
उत्तर-
आधे आवर्तकाल के कण का विस्थापन r+r = 2r होगा तथा पूरे आवर्तकाल के बाद इसका विस्थापन शून्य होगा।

प्रश्न 14.
सरल आवर्त गति के लिए समय और विस्थापन में ग्राफ प्रदर्शित कीजिए।
उत्तर
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 14

प्रश्न 15.
सरल आवर्त गति करने वाले कण के वेग का सूत्र लिखिए तथा इसका समय-त्वरण ग्राफ खीचिए।
उत्तर-
सरल आवर्त गति करने वाले कण के वेग का सूत्र,
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 15

प्रश्न 16.
पृथ्वी पर सेकण्ड लोलक की लम्बाई की गणना कीजिए। पृथ्वी पर g का मान 9.8 मी/से² है। (π = 3.14)
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 16
अत: पृथ्वी तल पर सेकण्ड लोलक की लम्बाई लगभग 1 मीटर होती है।

प्रश्न 17.
500 ग्राम का एक गोला, 1.0 मीटर लम्बी डोरी से लटका है। क्षैतिज स्थिति से मुक्त करने पर यह ऊर्ध्वतल में दोलन करने लगता है। दोलनों के दौरान जब डोरी ऊर्ध्व से 60° कोण पर है। तब डोरी में तनाव ज्ञात कीजिए।
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 17
दिया है,
गोले का द्रव्यमान (m) = 500 ग्राम
= 0.5 किग्रा
∵ डोरी क्षैतिज स्थिति में है, अत: डोरी में तनाव
T = mg cos θ
T = 0.5 x 10 x cos60 = 0.5 x 10 x frac { 1 }{ 2 }= 2.5 न्यूटन

प्रश्न 18.
एक कण सरल आवर्त गति कर रहा है। किसी क्षण इसका विस्थापन y = a/2 है। कण मध्यमान स्थिति से गति प्रारम्भ करता है। इस स्थिति के लिए कला की गणना कीजिए।
हल-
कला-विस्थापन का समीकरण ।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 18

प्रश्न 19.
किसी लिफ्ट में लटकाये गए एक सरल लोलक के दोलन के आवर्तकाल पर क्या प्रभाव पड़ता है जब लिफ्ट एक त्वरण α से ऊपर चढ़ रही है?
उत्तर-
जब लिफ्ट α त्वरण से ऊपर की ओर त्वरित होती है तो प्रभावी α का मान बढ़कर (α + α) हो जाता है। अतः आवर्तकाल T घट जाता है।

प्रश्न 20.
किसी स्प्रिंग के बल नियतांक की परिभाषा दीजिए।
हल-
यदि किसी स्प्रिंग पर F बल लगाने से उसकी लम्बाई में x वृद्धि हो जाए तो
F ∝ x या F = kx
जहाँ k = स्प्रिंग का बल नियतांक। यदि x = 1 तो k = F,
अत: किसी स्प्रिंग का बल नियतांक उस बल के बैराबर है जो उसकी लम्बाई में एकांक वृद्धि कर दे। इसका मात्रक न्यूटन/मीटर है।

प्रश्न 21.
प्रणोदित दोलन क्या होते हैं? उदाहरण देकर स्पष्ट कीजिए। या प्रणोदित कम्पन क्या है? इनके दो उदाहरण दीजिए।
उत्तर-
प्रणोदित दोलन (Forced oscillations)-जब किसी दोलन करने वाली वस्तु पर कोई ऐसा बाह्य आवर्त बल लगाते हैं जिसकी आवृत्ति, वस्तु की स्वाभाविक आवृत्ति से भिन्न हो, तो वस्तु आवर्त बल की आवृत्ति से दोलन करने लगती है। ऐसे दोलनों को प्रणोदित दोलन (forced oscillations) कहते हैं।
उदाहरणार्थ-(i) जब तने हुए पतले तार में प्रत्यावर्ती धारा प्रवाहित की जाती है और तार को चुम्बक के ध्रुवों के बीच रखते हैं तो तार प्रत्यावर्ती धारा की आवृत्ति से कम्पन करने लगता है।
(ii) सितार, वायलिन व स्वरमापी के तार पर जब किसी आवृत्ति का स्वर उत्पन्न किया जाता है तो इसके कम्पन, सेतु द्वारा खोखले ध्वनि बोर्ड में पहुँच जाते हैं। इससे बोर्ड के अन्दर की वायु में प्रणोदित दोलन उत्पन्न हो जाते हैं।

प्रश्न 22.
प्रणोदित तथा अनुनादी कम्पनों में क्या अन्तर है?
उत्तर-
अनुनादी कम्पन प्रणोदित कम्पनों की ही एक विशेष अवस्था है। प्रणोदित कम्पन में वस्तु पर आरोपित आवर्त बल की आवृत्ति कम्पन करने वाली वस्तु की स्वाभाविक आवृत्ति से भिन्न होती है तथा कम्पन का आयाम छोटा होता है, जबकि अनुनादी कम्पन से आरोपित आवर्त बल की आवृत्ति वस्तु की स्वाभाविक आवृत्ति के बराबर होती है तथा कम्पनों का आयाम महत्तम होता है।

प्रश्न 23.
मुक्त तथा प्रणोदित दोलनों में प्रत्येक का एक-एक उदाहरण देकर अन्तर समझाइए।
उत्तर
मुक्त तथा प्रणोदित दोलन में अन्तर । मुक्त दोलन
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 23

प्रश्न 24.
तार वाले वाद्य-यन्त्रों में प्रधान तार के साथ अन्य तार क्यों लगाये जाते हैं?
उत्तर-
प्रधान तार से उत्पन्न आवृत्ति के साथ अनुनादित होकर स्वर की तीव्रता बढ़ाने के लिए प्रधान तार के साथ अन्य तार लगाये जाते हैं जो विभिन्न आवृत्तियों के लिए समस्वरित (tuned) रहते हैं।

लघु उत्तरीय प्रश्न

प्रश्न 1.
एक सरल लोलक का गोलक एक जल से भरी गेंद है। गेंद की तली में एक बारीक छेद कर देने पर गोलक के आवर्तकाल पर क्या प्रभाव पड़ेगा?
उत्तर-
जैसे-जैसे जल बाहर निकलेगा, लोलक का गुरुत्व केन्द्र नीचे आता जाएगा और लोलक की प्रभावी लम्बाई बढ़ती जाएगी, जिससे आवर्तकाल बढ़ता जाएगा। जब गेंद आधे से अधिक खाली हो जाएगी तब लोलक का गुरुत्व केन्द्र पुनः ऊपर उठने लगेगा और लोलक की प्रभावी लम्बाई पुनः घटने लगेगी तथा आवर्तकाल भी घटने लगेगा। जब गेंद पूरी खाली हो जाएगी, तब लोलक का गुरुत्व केन्द्र पुनः गेंद के केन्द्र पर आ जाएगा तथा आवर्तकाल को मान प्रारम्भिक मान के बराबर हो जाएगा।

प्रश्न 2.
एक कण 6.0 सेमी आयाम तथा 6.0सेकण्ड के आवर्तकाल से सरल आवर्त गति कर रहा है। अधिकतम विस्थापन की स्थिति से आयाम के आधे तक आने में यह कितना समय लेगा?
हल-
अधिकतम विस्थापन की स्थिति में कण का विस्थापन समीकरण :
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 2

प्रश्न 3.
सरल आवर्त गति करते हुए एक कण का साम्य स्थिति में 4 सेमी दूरी पर त्वरण 16 सेमी सेकण्ड² है। इसका आवर्तकाल ज्ञात कीजिए।
हल-
∵सरल आवर्त गति करते हुए कण का आवर्तकाल
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3

प्रश्न 4.
सरल आवर्त गति करते हुए किसी कण का अधिकतम वेग 100 सेमी/से तथा अधिकतम त्वरण 157 सेमी/से² है। कण का आवर्तकाल ज्ञात कीजिए।
हल-
अधिकतम वेग aω = 100 सेमी/से ।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 4

प्रश्न 5.
एक सेकण्ड लोलक को ऐसे स्थान पर ले जाया जाता है जहाँg का मान 981 सेमी/से² के स्थान पर 436 सेमी/से² है। लोलक का उस स्थान पर आवर्तकाल ज्ञात कीजिए।
हल-
सेकण्ड लोलक का आवर्तकाल T=2pi sqrt { frac { l }{ g } } …(1)
स्थान बदलने पर आवर्तकाल { T }^{ ' }=2pi sqrt { frac { l }{ { g }^{ ' } } } ….(2)
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5

प्रश्न 6.
2 किग्रा द्रव्यमान का एक पिण्ड भारहीन स्प्रिंग जिसका बल नियतांक 200 न्यूटन/मी है, से लटका है। पिण्ड को नीचे की ओर 20 सेमी विस्थापित करके छोड़ दिया जाता है। ज्ञात कीजिए
(i) पिण्ड की अधिकतम चाल,
(ii) पिण्ड-स्प्रिंग निकाय की कुल ऊर्जा।
हल-
(i) स्प्रिंग में अधिकतम खिंचाव xmax = 20 सेमी = 0.20 मी पिण्ड को नीचे की उपर्युक्त दूरी से विस्थापित करके छोड़ देने पर यदि इसकी अधिकतम चाल υmax हो तो।
पिण्ड की अधिकतम गतिज ऊर्जा = स्प्रिंग के अधिकतम खिंचाव पर प्रत्यास्थ स्थितिज ऊर्जा
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 6
(ii) स्प्रिंग से लटके पिण्ड को खींचकर छोड़ देने पर स्प्रिंग की प्रत्यास्थ स्थितिज ऊर्जा पिण्ड की गतिज ऊर्जा तथा स्थितिज ऊर्जा परस्पर परिवर्तित होती रहती है।
पिण्ड-स्प्रिंग निकाय की कुल ऊर्जा = अधिकतम खिंचाव पर स्प्रिंग की स्थितिज ऊर्जा
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 6.1

प्रश्न 7.
जब एक भारहीन स्प्रिंग से 0.5 किग्रा का बाट लटकाया जाता है, तो उसकी लम्बाई में 0.02 मीटर की वृद्धि हो जाती है। स्प्रिंग का बल नियतांक एवं उसमें संचित ऊर्जा की गणना कीजिए। G = 9.8 मी/से2)
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7

प्रश्न 8.
एक स्प्रिंग पर 0.60 किग्रा का पिण्ड लटकाने पर उसकी लम्बाई 0.25 मी बढ़ जाती है। यदि स्प्रिंग से 0.24 किग्रा का एक पिण्ड लटकाकर नीचे खींचकर छोड़ दिया जाए तो स्प्रिंग का आवर्तकाल कितना होगा? (g = 10 मी/से2)
हल-
M=0.60 किग्रा, g = 10 मी/से2
स्प्रिंग की लम्बाई में वृद्धि ∆x = 0.25 मी
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 8

प्रश्न 9.
0.25 किग्रा द्रव्यमान की एक वस्तु जब किसी स्प्रिंग से लटकायी जाती है तो स्प्रिंग की। लम्बाई 5 सेमी बढ़ जाती है। जब 0.4 किग्रा की वस्तु इससे लटकांयी जाती है तब स्प्रिंग के दोलन का आवर्तकाल ज्ञात कीजिए। (g = 10 मी/से2)
हल-
वस्तु को द्रव्यमान (M) = 0.25 किग्रा, g = 10 मी/से2
स्प्रिंग की लम्बाई में वृद्धि ∆x = 5 सेमी = 5 x 10-2 मीटर
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 9.1

प्रश्न 10.
0.40 किग्रा द्रव्यमान के एक पिण्ड को एक आदर्श स्प्रिंग से लटकाने पर स्प्रिंग की लम्बाई 2.0 सेमी बढ़ जाती है। यदि इस स्प्रिंग से 2.0 किग्रा द्रव्यमान के पिण्ड को लटकाया जाए तो दोलन का आवर्तकाल क्या होगा? (g = 10 मी/से2)
हल-
पिण्ड का द्रव्यमान (M) = 0.40 किग्रा, g = 10 मी/से2
स्प्रिंग की लम्बाई में वृद्धि Δx = 2 सेमी = 2 x 10-2 मीटर
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 10

विस्तृत उत्तरीय प्रश्न

प्रश्न 1.
सरल आवर्त गति से आप क्या समझते हैं। सरल लोलक के आवर्तकाल के लिए व्यंजक प्राप्त कीजिए।
उत्तर-
सरल आवर्त गति-जब किसी कण की अपनी साम्य स्थिति के इधर-उधर एक सरल रेखा में गति इस प्रकार की होती है कि इस पर लग रहा त्वरण (अथवा बल) प्रत्येक स्थिति में कण के विस्थापन के अनुक्रमानुपाती रहती है तथा सदैव साम्य स्थिति की ओर दिष्ट होता है तो कण की गति को सरल आवर्त गति कहते हैं।
सरल लोलक के आवर्तकाल का व्यंजक-चित्र 14.18 में एक सरल लोलक दर्शाया गया है जिसकी प्रभावी लम्बाई 1 है तथा उसके गोलक का द्रव्यमान m है। गोलक को बिन्दु S से लटकाया गया है तथा गोलक की साम्य स्थिति O है। मान लीजिए दोलन करते समय गोलक किसी क्षण स्थिति A में है, जबकि
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 1
इसका विस्थापन OA = x है। इस स्थिति में धागा ऊर्ध्वाधर से θ कोण बनाता है तथा गोलक पर । निम्नलिखित दो बल लगते है– .
1. गोलक का भार mg जो उसके गुरुत्व केन्द्र पर ठीक नीचे की ओर ऊध्र्वाधर दिशा में लगता है।
2. धागे में तनाव का बल T’ जो धागे के अनुदिश निलम्बन बिन्दु S की ओर लगता है।
भार mg को दो भागों में वियोजित किया जा सकता है : घटक mg Cos θ जो कि धागे के अनुदिश T’ की विपरीत दिशा में लगता है तथा घटक mg sin θ जो कि धागे की लम्बवत् दिशा में लगता है। धागे में तनाव T’ तथा घटक mg cos θ का परिणामी (T’ – mg cos θ), गोलक को l त्रिज्या के वृत्तीय पथ पर चलने के लिए आवश्यक अभिकेन्द्र बल (mv²/l) प्रदान करता है; जबकि घटक mg sin θ गोलक को साम्य स्थिति O में लौटाने का प्रयत्न करता है। यही गोलक पर कार्य करने वाला प्रत्यानयन बल (restoring force) है।
अतः गोलक पर प्रत्यनियन बल F = – mg sin θ
(जबकि θ, कोणीय विस्थापन से छोटा है एवं इसे रेडियन में नापा जाता है।)
ऋण चिह्न यह व्यक्त करता है कि बल F, विस्थापन θ के घटने की दिशा में है अर्थात् साम्य स्थिति की ओर को दिष्ट है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 1.1
समीकरण (1) में (g/l) किसी निश्चित स्थान पर किसी दी हुई प्रभावी लम्बाई के सरल लोलक के लिए नियतांक है; अत: त्वरण ∝ – (विस्थापन) स्पष्ट है कि गोलक का त्वरण विस्थापन के अनुक्रमानुपाती है तथा उसकी दिशा विस्थापन x के विपरीत है। क्योंकि θ का मान कम रखा जाता है, अत: चाप OA लगभग ऋजु-रेखीय होगा। इस प्रकार लोलक सरल रेखा में गति करेगा। अतः गोलक की गति सरल आवर्त गति है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 1.2

प्रश्न 2.
सरल आवर्त गति करते हुए किसी कण के वेग का सूत्र प्राप्त कीजिए।
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 2
सरल आवर्त गति में कण का वेग (Velocity of a particle in S.H.M.)—निर्देश वृत्त की परिधि पर चलते कण P के वेग v को परस्पर दो लम्बवत् घटकों में वियोजित करने पर (चित्र 14.19);
v का PN के समान्तर घटक = v sin θ
v का PN के लम्बवत् घटक = v cos θ
घटक v cos θ, कण P से वृत्त के व्यास पर खींचे गये लम्ब के पाद N की गति की दिशा OA के समान्तर है। अत: यह पाद N के वेग के बराबर है। इस प्रकार, पाद N का वेग u = v cos θ
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 2.1
इस समीकरण से यह पता चलता है कि सरल आवर्त गति करते हुए किसी कण का वेग (u) उसके विस्थापन (y) के साथ-साथ बदलता है। जब विस्थापन शून्य होता है (y = 0) अर्थात् जब । कण अपनी साम्य स्थिति से गुजरता है तब वेग अधिकतम होता है (umax = aω) तथा जब विस्थापन अधिकतम होता है (y = a) तब वेग शून्य होता है (u = 0).

प्रश्न 3.
यदि पृथ्वी के केन्द्र से होकर पृथ्वी के आर-पार एक सुरंग बनाई जाए तथा उस सुरंग में एक पिण्ड छोड़ा जाए तो दिखाइए कि पिण्ड का त्वरण सदैव सुरंग के मध्य बिन्दु (अर्थात पृथ्वी के केन्द्र) से विस्थापन के अनुक्रमानुपाती होता है। यह भी सिद्ध कीजिए कि इसका आवर्तकाल पृथ्वी के समीप परिक्रमा करते हुए उपग्रह के आवर्तकाल के बराबर होगा।
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3
चित्र 14.20 में पृथ्वी के केन्द्र से गुजरने वाली एक सुरंग AB को प्रदर्शित किया गया है तथा O पृथ्वी का केन्द्र है। m द्रव्यमान के एक पिण्ड को इस सुरंग के भीतर गति करने के लिए छोड़ा गया है। माना किसी क्षण पिण्ड बिन्दु P पर है, जहाँ इसका पृथ्वी के केन्द्र O से विस्थापन x है। इस समय पिण्डे x त्रिज्या के ठोस गोले के बाह्य पृष्ठ पर स्थित है। अत: पिण्ड पर पृथ्वी का गुरुत्वीय बल x त्रिज्या के गोले के गुरुत्वीय बल के बराबर होगा, जो P से O की दिशा में कार्य करेगा।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3.1
इस प्रकार, पिण्ड का त्वरण α, विस्थापन x के अनुक्रमानुपाती है तथा इसकी दिशा विस्थापन x के विपरीत है। अतः पिण्ड की गति सरल आवर्त गति है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 3.2

प्रश्न 4.
एक कण सरल आवर्त गति कर रहा है। यदि माध्य स्थिति से x1 तथा x2 दूरियों पर कण का वेग क्रमशः u1 तथा u2 हैं, तो सिद्ध कीजिए कि इसका आवर्तकाल T=2xsqrt { left[ frac { { { x }^{ 2 } }_{ 2 }-{ { x }^{ 2 } }_{ 1 } }{ { { u }^{ 2 } }_{ 1 }-{ { u }^{ 2 } }_{ 2 } } right] } होगा।
हल-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 4

प्रश्न 5.
सरल आवर्त गति करते हुए पिण्ड की दोलन गतिज ऊर्जा, स्थितिज ऊर्जा तथा सम्पूर्ण ऊर्जा के लिए व्यंजक प्राप्त कीजिए।
उत्तर-
गतिज ऊर्जा (Kinetic energy)-सरल आवर्त गति करते हुए कण को जब किसी क्षण उसकी साम्य स्थिति से विस्थापन y हो तो उस क्षण उसका वेग latex s=2]u=omega sqrt { left( { a }^{ 2 }-{ y }^{ 2 } right) } [/latex]
जहाँ a = कण का आयाम तथा ) ω = कण की कोणीय आवृत्ति। यदि पिण्ड (कण) का द्रव्यमान m हो
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5
स्थितिज ऊर्जा (Potential energy)-सरल आवर्त गति करते हुए कण । का जब किसी क्षण उसकी साम्य स्थिति से विस्थापन y है तो उस क्षण ||
उसका त्वरण α =- ω²y (जहाँ ω = कोणीय आवृत्ति)।
यदि कण का द्रव्यमान m हो तो इस क्षण कण पर लगने वाला प्रत्यानयन बल F = द्रव्यमान x त्वरण
F = m x α = m x (-ω²y) =-mω²y
ऋण चिह्न केवल बल की दिशा (विस्थापन y के विपरीत) का प्रतीक है।’
अतः बल का परिमाण F = mω²y
यदि हम कण पर लगे बल F तथा कण के विस्थापन y के बीच एक ग्राफ खींचे तो चित्र 14.21 की भाँति एक सरल रेखा प्राप्त होती है। यह एक बल विस्थापन ग्राफ है। अत: इस ग्राफ (सरल रेखा) तथा विस्थापन अक्ष के बीच घिरा क्षेत्रफल कण पर किये गये कार्य अर्थात् कण की स्थितिज ऊर्जा को व्यक्त करेगा।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5.2
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 5.1
इस प्रकार समी० (4) से स्पष्ट है कि सरल आवर्त गति करते कण (पिण्ड) की कुल ऊर्जा आयाम के वर्ग (a²) के तथा आवृत्ति के वर्ग (n²) के अनुक्रमानुपाती होती है।

प्रश्न 6.
बल नियतांक k की भारहीन स्प्रिंग से लटके हुए एक द्रव्यमान m के पिण्ड के ऊध्र्वाधर दोलनों के आवर्तकाल के लिए व्यंजक प्राप्त कीजिए।
उत्तर-
स्प्रिंग से लटके पिण्ड की गति (Motion of a body suspended by a spring)—चित्रं 14.22 (a) में एक हल्की (भारहीन) स्प्रिंग दर्शायी गई है, जिसकी सामान्य लम्बाई L है तथा यह एक दृढ़ आधार से लटकी है। जब इसके निचले सिरे पर m द्रव्यमान का एक पिण्ड लटकाया जाता है तो पिण्ड के भार से इसमें खिंचाव उत्पन्न होता है। माना यह खिंचाव अथवा स्प्रिंग की लम्बाई में वृद्धि l है। चित्र 14.22 (b) में स्प्रिंग अपनी प्रत्यास्थता के कारण द्रव्यमान m पर एक प्रत्यानयन बल F ऊपर ऊर्ध्व दिशा में लगाती है। हम जानते हैं कि स्प्रिंग के लिए हुक का नियम सत्य होता है। अतः हुक के नियम से F = – kl.
जहाँ k स्प्रिंग का बल नियतांक है। इसे स्प्रिंग नियतांक (spring constant) भी कहते हैं। इसका मात्रक ‘न्यूटन/मीटर’ होता है। उपर्युक्त समीकरण में ऋण चिह्न इस बात का संकेत करता है कि प्रत्यानयन बल F विस्थापन के विपरीत दिशा में है। इस स्थिति में पिण्ड पर लगने वाला एक दूसरा बल पिण्ड का भार mg है। चूंकि इस स्थिति में पिण्ड स्थायी सन्तुलन अवस्था में है, अतः इस पर परिणामी बल शून्य होना चाहिए।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 6
अत: F + mg = 0
-kl + mg = 0
mg = kl …(1)
अब, यदि पिण्डे को थोड़ा नीचे खींचकर छोड़ दिया जाये तो यह अपनी साम्य स्थिति के ऊपर-नीचे दोलन करने लगता है। माना दोलन करते समय किसी क्षण पिण्ड का
साम्य स्थिति से विस्थापन y दूरी नीचे की ओर है [चित्र 14.22 (c)]। इस क्षण स्प्रिंग की लम्बाई (L + l) से करता हुआ बढ़कर (L + l + y) हो जाती है; अर्थात् स्प्रिंग की लम्बाई में कुल वृद्धि (l + y) ह्येगी। अतः इस देशा में स्प्रिंग द्वारा पिण्ड पर लगाया गया प्रत्यानयन बल
F’ = – k(l + y) = – kl – ky
पिण्ड पर दूसरा बल अब भी उसका भार mg ही है। चूंकि इस दशा में पिण्ड गतिशील है। अत: इस पर लगने वाला परिणामी बल
F” = F’ + mg = (- kl – ky) + mg
परन्तु समी० (1) से, mg = kl
∴ F” = -kl – ky + kt या F” = – ky
अत: पिण्ड में उत्पन्न त्वरण α = बल/द्रव्यमान = F”/m
α = -(ky/m) ,alpha =-left( frac { k }{ m } right) y…(2)
चूँकि पिण्ड विशेष के लिए m नियत तथा स्प्रिंग के लिए k नियत है, अत: समी० (2) में राशि (k/m) नियतांक है।
अतः α ∝ -y
इस प्रकार स्प्रिंग से लटके पिण्ड के दोलन करते समय इसमें त्वरण α पिण्ड की साम्य स्थिति से उसके विस्थापन y के अनुक्रमानुपाती है, तथा ऋण चिह्न (-) इस तथ्य का प्रतीक है कि त्वरण की दिशा विस्थापन की दिशा के विपरीत है। अंतः पिण्ड की गति सरल आवर्त है।
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 6.1
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 6.2

प्रश्न 7.
आरेख की सहायता से अवमन्दित कम्पन को समझाइए। अवमन्दित कम्पन के दो उदाहरण दीजिए। अवमन्दित कम्पन को प्रणोदित कम्पन में बदलने के लिए क्या करना पड़ता है?
उत्तर-
UP Board Solutions for Class 11 Physics Chapter 14 Oscillations 7
अवमन्दित कम्पन (Damped Vibrations)-किसी वस्तु के कम्पन करते समय कोई-न-कोई बाह्य अवमन्दक बल (damping force) अवश्य विद्यमान रहता है जिसके कारण कम्पन करती वस्तु की ऊर्जा लगातार घटती रहती है, इसके परिणामस्वरूप वस्तु के कम्पन का आयाम भी निरन्तर घटता जाता है या कुछ समय पश्चात् वस्तु कम्पन करना बन्द कर देती है। यह वह स्थिति है जब वस्तु को दी गयी कुल ऊर्जा समाप्त हो चुकी होती है।
इस प्रकार बाह्य अवमन्दक बलों के विरुद्ध दोलन करने, वाली वस्तु की ऊर्जा का निरन्तर कम होते रहना ऊर्जा क्षय कहलाता है। इस ऊर्जा क्षय के कारण ही कम्पित वस्तु के कम्पनों का आयाम धीरे-धीरे घटता जाता है। ऐसे कम्पन को जिनका ओयार्म समय के साथ घटता जाता है, अवमन्दित कम्पन (damped vibrations) कहते है।
उदाहरणार्थ- (i) सरल लोलक के गोलक के दोलन करते समय लोलक को लटकाने वाले दृढ़ आधार का घर्षण तथा वायु की श्यानता बाह्य अवमन्दक का कार्य करते हैं जिससे इसके दोलनों का आयाम धीरे-धीरे घटता जाता है तथा अन्त में गोलक दोलन करना बन्द कर देता है।
(ii) ऊध्र्वाधर स्प्रिंग से लटके पिण्ड को थोड़ा नीचे खींचकर छोड़ देने पर पिण्ड के दोलन अवमन्दित दोलन हैं। यहाँ पिण्ड का वायु के साथ घर्षण (श्यानता) अवमन्दक-बल का कार्य करता है। अवमन्दित कम्पन को प्रणोदित कम्पन में बदलने के लिए कम्पित ‘वस्तु पर बाह्य आवर्त बल आरोपित करना होता है।

प्रश्न 8.
अनुनाद से क्या तात्पर्य है? व्याख्या कीजिए। ध्वनि अनुनाद, यान्त्रिक अनुनाद तथा विद्युत चुम्बकीय अनुनाद के एक-एक उदाहरण दीजिए।
उत्तर-
जब किसी दोलन करने वाली वस्तु पर कोई बाह्य आवर्त बल लगाया जाता है तो वस्तु बल की आवृत्ति से प्रणोदित दोलन करने लगती है। यदि बाह्य बल की आवृत्तिवस्तु की स्वाभाविक आवृत्ति के बराबर (अथवा इसकी पूर्ण गुणज) हो तो वस्तु के प्रणोदित दोलनों का आयाम बहुत बढ़ जाता है। इस घटना को अनुनाद (resonance) कहते हैं। बाह्य बल और वस्तु की आवृत्ति में थोड़ा-सा ही अन्तर होने पर आयाम बहुत कम हो जाता है। स्पष्ट है कि अनुनाद, प्रणोदित दोलनों की ही एक विशेष अवस्था है।
अनुनाद की व्याख्या-जब बाह्य बल की आवृत्ति वस्तु की स्वाभाविक आवृत्ति के बराबर होती है तो दोनों समान कला में कम्पन करते हैं। अतः आवर्त बल द्वारा लगाये गये उत्तरोत्तर आवेग वस्तु की ऊर्जा लगातार बढ़ाते जाते हैं और वस्तु का आयाम लगातार बढ़ता जाता है। सिद्धान्त रूप से वस्तु का आयाम अनन्त तक बढ़ता रहना चाहिए, परन्तु व्यवहार में दोलन करती हुई वस्तु में वायु के घर्षण तथा ध्वनि विकिरण के कारण ऊर्जा-क्षय होता रहता है। दोलन आयाम बढ़ने के साथ-साथ ऊर्जा-क्षय भी बढ़ता जाता है और एक ऐसी स्थिति आ जाती है कि बाह्य बल द्वारा प्रति दोलन दी गई ऊर्जा, वस्तु द्वारा प्रति । दोलन में ऊर्जा-क्षय के बराबर हो जाती है। इस स्थिति में आयाम का बढ़ना रुक जाता है।
उदाहरणार्थ
1. ध्वनि अनुनाद
(i) डोरियों में कम्पन-यदि समान आवृत्ति की दो डोरियाँ एक ही बोर्ड पर तनी हों तथा उनमें से एक को कम्पित किया जाये तो दूसरी स्वयं कम्पन करने लगती है।
(ii) बर्तन में जल भरना-काँच के एक लम्बे जार के मुँह पर किसी स्वरित्र को बजाकर रखने पर एक धीमी ध्वनि सुनाई देती है। जार में पानी भरना शुरू कर देने पर जार के वायु-स्तम्भ की लम्बाई कम होने लगती है एवं एक निश्चित लम्बाई पर तेज ध्वनि सुनाई पड़ती है। इसका कारण यह है कि एक निश्चित लम्बाई पर वायु स्तम्भ की स्वाभाविक आवृत्ति, स्वरित्र की आवृत्ति के बराबर हो जाती है और अनुनाद के कारण वायु स्तम्भ में बड़े आयाम के कम्पन होते हैं जिससे ध्वनि तेज सुनाई देती है।
(iii) वातावरण के कम्पन-कान के ऊपर खाली गिलास रखने पर गुनगुन की ध्वनि सुनाई पड़ती है। इसका कारण यह है कि वातावरण में अनेक प्रकार के कम्पन उपस्थित रहते हैं। इन कम्पनों में से जिसकी आवृत्ति गिलास के भीतर वायु की स्वाभाविक आवृत्ति के बराबर होती है, वे वायु को अनुनादित करते हैं।

2. यान्त्रिक अनुनाद
सेना का पुल पार करना-जब सेना किसी पुल को पार करती है तब सैनिक कदम मिलाकर नहीं चलते। इसका कारण यह है कि यदि सैनिकों के कदमों की आवृत्ति, पुल की स्वाभाविक आवृत्ति के बराबर हो जायेगी तो पुल में बड़े आयाम के कम्पन होने लगेंगे और पुल के टूटने का खतरा हो जाएगा।

3. विद्युत-चुम्बकीय अनुनाद
रेडियो-यह विद्युत अनुनाद का उदाहरण है। विभिन्न प्रसारण केन्द्रों से अलग-अलग आवृत्तियों पर तरंगें प्रसारित की जाती हैं। रेडियो पर एक L-C परिपथ लगा होता है। इसमें लगे संधारित्र की धारिता (C) बदलने पर L-C परिपथ की आवृत्ति left( t=frac { 1 }{ 2pi sqrt { LC } } right) बदल जाती है। जब इस विद्युत परिपथ की का आवृत्ति किसी प्रसारण केन्द्र (स्टेशन) की आवृत्ति के बराबर हो जाती है तो विद्युत परिपथ उन तरंगों को ग्रहण कर लेता है और स्टेशन से प्रोग्राम सुनाई देने लगती है।

All Chapter UP Board Solutions For Class 11 physics Hindi Medium

—————————————————————————–

All Subject UP Board Solutions For Class 11 Hindi Medium

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

यदि यह UP Board solutions से आपको सहायता मिली है, तो आप अपने दोस्तों को upboardsolutionsfor.com वेबसाइट साझा कर सकते हैं।

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top