In this chapter, we provide UP Board Solutions for Class 9 Maths Chapter 14 Statistics (सांख्यिकी) for Hindi medium students, Which will very helpful for every student in their exams. Students can download the latest UP Board Solutions for Class 9 Maths Chapter 14 Statistics (सांख्यिकी)pdf, free UP Board Solutions Class 9 Maths Chapter 14 Statistics (सांख्यिकी) book pdf download. Now you will get step by step solution to each question. Up board solutions कक्षा 9 गणित पीडीऍफ़
UP Board Solutions for Class 9 Maths Chapter 14 Statistics (सांख्यिकी)
प्रश्नावली 14.1
प्रश्न 1. उन आँकड़ों के पाँच उदाहरण दीजिए जिन्हें आप दैनिक जीवन में एकत्रित कर सकते हैं।
हल :
दैनिक जीवन में संग्रह योग्य आँकड़े :
- अपनी कक्षा के 25 सहपाठियों द्वारा एक क्लास टेस्ट में प्राप्त अंकों का संग्रह।
- अपने परिवार के सदस्यों की आयु और उनकी लम्बाई सम्बन्धी आँकड़ों का संग्रह।
- कक्षा के छात्रों के परिवार के सदस्यों की संख्या का संग्रह।
- उद्यान में लगे 20 पौधों की लम्बाइयों का संग्रह।
- N.C.C. ऑफिसर से ऐसे छात्रों की सूची का संग्रह जिन्होंने N.C.C. कोर्स लिया है। ऐसे और भी अनेक उदाहरण सम्भव हैं।
प्रश्न 2. ऊपर दिए गए प्रश्न 1 के आँकड़ों को प्राथमिक आँकड़ों या गौण आँकड़ों में वर्गीकृत कीजिए।
हल :
प्रश्न 1 में दिए गए प्रथम चार उदाहरण प्राथमिक आँकड़ों के हैं क्योकि इनका संग्रह स्वयं किया गया है। पाँचवाँ उदाहरण गौण आँकड़ों का है क्योकि उनका संग्रह स्वयं न करके एक कार्यालय की सूची से किया गया है।
प्रश्नावली 14.2
प्रश्न 1. आठवीं कक्षा के 30 विद्यार्थियों के रक्त समूह ये हैं :
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O
इन आँकड़ों को एक बारम्बारता बण्टन सारणी के रूप में प्रस्तुत कीजिए। बताइए कि इन विद्यार्थियों में कौन-सा रक्त समूह अधिक सामान्य है और कौन-सा रक्त समूह विरलतम रक्त समूह है।
हल :
यहाँ A, B, O, AB चार रक्त समूह हैं जिनकी उपस्थिति का 30 विद्यार्थियों के रक्त में परीक्षण किया गया है।
स्पष्ट है कि अधिकतम बारम्बारता वाला रक्त समूह अर्थात रक्त समूह 0 अधिक सामान्य है और न्यूनतम बारम्बारता वाला रक्त समूह अर्थात रक्त समूह AB विरलतम है।
प्रश्न 2. 40 इंजीनियरों की उनके आवास से कार्य-स्थल की ( किलोमीटर में) दूरियाँ ये हैं :
0 – 5 को (जिसमें 5 सम्मिलित नहीं है) पहला अन्तराल लेकर ऊपर दिए हुए आँकड़ों से वर्ग-माप 6 वाली एक वर्गीकृत बारम्बारता बण्टन सारणी बनाइए। इस सारणीबद्ध निरूपण में आपको कौन-से मुख्य लक्षण देखने को मिलते हैं?
हल : इंजीनियरों के आवास से उनके कार्यालय की न्यूनतम दूरी = 2 किमी
अधिकतम दूरी = 32 किमी
दूरी का परिसर = 32 – 2 = 30 किमी
वर्गों की संख्या = + 1 = 6 + 1 = 7
मुख्य लक्षण : यहाँ हम देखते हैं कि उक्त सारणी में वर्ग अनतिव्यापी (non-overlapping) हैं तथा चार इंजीनियरों के कार्यालय उनके आवास से सामान्यतः अधिक दूर हैं।
प्रश्न 3. 30 दिन वाले महीने में एक नगर की सापेक्ष आर्द्रता (% में) यह रही है।
(i) वर्ग 84-86, 86-88 आदि लेकर एक वर्गीकृत बारम्बारता बण्टन बनाइए।
(ii) क्या आप बता सकते हैं कि ये आँकड़े किस महीने या ऋतु से सम्बन्धित हैं?
(iii) इन आँकड़ों का परिसर क्या है?
(ii) इन आँकड़ों में उल्लिखित आर्द्रता सामान्य से अधिक है। अत: ये आँकड़े वर्षा ऋतु के किसी महीने में संकलित किए गए हैं।
(iii) परिसर = आँकड़ों का अधिकतम मान – आँकड़ों का न्यूनतम मान = 99.2 – 84.9 = 14.3.
प्रश्न 4. निकटतम सेन्टीमीटरों में मापी गई 50 विद्यार्थियों की लम्बाइयाँ ये हैं :
(i) 160 – 165, 165 – 170 आदि का वर्ग अन्तराल लेकर ऊपर दिए गए आँकड़ों को एक वर्गीकृत बारम्बारता बण्टन सारणी के रूप में निरूपित कीजिए।
(ii) इस सारणी की सहायता से आप विद्यार्थियों की लम्बाइयों के सम्बन्ध में क्या निष्कर्ष निकाल सकते हैं?
हल :
(i) सबसे कम लम्बाई = 150 सेमी
सबसे अधिक लम्बाई = 173 सेमी
लम्बाई का परिसर = 173 – 150 = 23 सेमी
वर्ग का आमाप = 5 सेमी
वर्गों की संख्या = = 5 और प्रथम वर्ग (150-155)
(ii) निष्कर्ष : (a) अधिकांश छात्रों की लम्बाई 165 सेमी से कम है।
(b) 50% से अधिक विद्यार्थी (अर्थात 12 + 9 + 14 = 35) 165 सेमी से छोटे हैं तथा 5 छात्रों की लम्बाई 170 सेमी से अधिक है।
प्रश्न 5. एक नगर में वायु में सल्फर डाइऑक्साइड का सान्द्रण भाग प्रति मिलियन [parts per million (ppm)] में ज्ञात करने के लिए एक अध्ययन किया गया। 30 दिनों के प्राप्त किए गए आँकड़े ये हैं :
(i) 0.00 – 0.04, 0.04 – 0.08 आदि का वर्ग-अन्तराल लेकर इन आँकड़ों की एक वर्गीकृत बारम्बारता बण्टन सारणी बनाइए।
(ii) सल्फर डाइऑक्साइड की सान्द्रता कितने दिन 0.11 भाग प्रति मिलियन से अधिक रही?
हल :
(i) अधिकतम सान्द्रण = 0.22 ppm
निम्नतम सान्द्रण = 0.01 ppm
सान्द्रण का परिसर = 0.22 – 0.01 = 0.21 ppm
वर्ग का आमाप = 0.04 ppm
वर्गों की संख्या = = 5 और प्रथम वर्ग (0.00 – 0.04)
(ii) सल्फर डाइऑक्साइड का सान्द्रण 0.11 भाग प्रति मिलियन से अधिक सीमा वाले वर्ग और उनकी बारम्बारता
वर्ग 0.12 – 0.16 बारम्बारता 02
वर्ग 0.16 – 0.20 बारम्बारता 04
वर्ग 0.20 – 0.24 बारम्बारता 02
अतः सल्फर डाइऑक्साइड को वायु में सान्द्रण 0.11 भाग प्रति मिलियन से अधिक 8 दिनों तक रहा।
प्रश्न 6. तीन सिक्कों को एक साथ 30 बार उछला गया। प्रत्येक बार चित (Head) आने की संख्या निम्न प्रकार है :
उपर्युक्त आँकड़ों के लिए एक बारम्बारता बण्टन सारणी बनाइए।
हल : चित आने की न्यूनतम संख्या = 0 और अधिकतम संख्या = 3
प्रश्न 7. 50 दशमलव स्थान तक शुद्ध का मान नीचे दिया गया है।
3.14159265358979323846264338327950288419716939937510
(i) दशमलव बिन्दु के बाद आने वाले 0 से 9 तक के अंकों का एक बारम्बारता बण्टन बनाइए।
(ii) सबसे अधिक बार और सबसे कम बार आने वाले अंक कौन-कौन से हैं?
हल :
(i) 0 से 9 तक के अंकों की बारम्बारता बण्टन सारणी
(ii) सारणी से स्पष्ट है कि सबसे कम अर्थात 2 बार शून्य (0) का अंक और सबसे अधिक अर्थात 8 बोर 3 व 9 अंक आए हैं।
प्रश्न 8. तीस बच्चों से यह पूछा गया कि पिछले सप्ताह उन्होंने कितने घण्टों तक टी०वी० के प्रोग्राम देखे। प्राप्त परिणाम ये रहे हैं :
(i) वर्ग चौड़ाई 5 लेकर और एक वर्ग अन्तराल को 5 -10 लेकर इन आँकड़ों की एक वर्गीकृत बारम्बारता बण्टन सारणी बनाइए।
(ii) कितने बच्चों ने सप्ताह में 15 या अधिक घण्टों तक टेलीविजन देखा?
हल :
(i) न्यूनतम घण्टे = 1, अधिकतम घण्टे = 17
घण्टों का परिसर = 17 – 1 = 16
वर्ग का आमाप = 5
वर्गों की संख्या = + 1 = 3 + 1 = 4
वर्ग 0 – 5, 5 – 10, 10 – 15 व 15 – 20 होंगे।
(ii) सारणी से स्पष्ट है कि 2 बच्चों ने 15 या अधिक घण्टों से अधिक टी०वी० देखी।
प्रश्न 9. एक कम्पनी एक विशेष प्रकार की कार-बैट्री बनाती है। इस प्रकार की 40 बैट्रियों के जीवन-काल (वर्षों में) ये रहे हैं :
0.5 माप के वर्ग अन्तराल लेकर तथा अन्तराल 2 – 2.5 से प्रारम्भ करके इन आँकड़ों की एक वर्गीकृत बारम्बारता बण्टन सारणी बनाइए।
हल : अधिकतम जीवन-काल = 4.6 वर्ष
न्यूनतम जीवन-काल = 2.2 वर्ष
जीवन-काल का परिसर = 4.6 – 2.2 = 2.4 वर्ष
वर्ग का आमाप = 0.5
वर्गों की संख्या = + 2 = 4 + 2 = 6
प्रश्नावली 14.3
प्रश्न 1. एक संगठन ने पूरे विश्व में 15-44(वर्षों में) की आयु वाली महिलाओं में बीमारी और मृत्यु के कारणों का पता लगाने के लिए किए गए सर्वेक्षण से निम्नलिखित आँकड़े (% में) प्राप्त किए।
(i) ऊपर दी गई सूचनाओं को आलेखीय रूप में निरूपित कीजिए।
(ii) कौन-सी अवस्था पूरे विश्व की महिलाओं के खराब स्वास्थ्य और मृत्यु का बड़ा कारण है?
(iii) अपनी अध्यापिका की सहायता से ऐसे दो कारणों का पता लगाने का प्रयास कीजिए जिनकी ऊपर (ii) में मुख्य भूमिका रही हो।
हल :
(i) दी गई सूचनाओं का आलेखीय निरूपण
बनाने की विधि :
- X – अक्ष व Y – अक्ष खींचिए।
- X – अक्ष पर उचित रिक्त स्थानों के बीच समान चौड़ाई रखते हुए महिलाओं में बीमारी और मृत्यु के कारण प्रदर्शित कीजिए।
- Y – अक्ष पर बीमारियों के प्रतिशत को उचित पैमाना लेकर अंकित कीजिए। चित्र में 1 सेमी = 2% पैमाने से बीमारियों का प्रतिशत अंकित किया गया है।
- प्रत्येक कारण के सापेक्ष उसके प्रतिशत को एक ऐसे आयत द्वारा प्रदर्शित कीजिए जिसकी ऊँचाई बीमारी के प्रतिशत को और समान चौड़ाइयाँ बीमारी को व्यक्त करें।
- आयतों की ऊपरी चौड़ाइयों पर उनके द्वारा व्यक्त बीमारी के प्रतिशत लिख दीजिए।
(ii) जनन स्वास्थ्य अवस्था का प्रतिशत (31.8) सर्वाधिक है।
अत: यह पूरे विश्व की महिलाओं के खराब स्वास्थ्य । और मृत्यु का बड़ा कारण है।
(iii) (a) पुनरुत्पादी स्वास्थ्य अवस्था, (b) अपरिपक्व आयु में प्रजनन।
प्रश्न 2. भारतीय समाज के विभिन्न क्षेत्रों में प्रति हजार लड़कों पर लड़कियों की (निकटतम दस तक की) संख्या के आँकड़े अग्रलिखित दिए गए हैं:
(i) ऊपर दी गई सूचनाओं को एक दण्ड आलेख द्वारा निरूपित कीजिए।
(ii) कक्षा में चर्चा करके, बताइए कि आप इस आलेख से कौन-कौन से निष्कर्ष निकाल सकते हैं।
हल :
(i) दण्ड चित्र (आलेख) बनाने की विधि
- पहले X – अक्ष व Y – अक्ष खींचिए।
- X – अक्ष पर समान रिक्त स्थानों के बीच किसी समान चौड़ाई के भारतीय समाज के विभिन्न क्षेत्र प्रदर्शित कीजिए।
- Y – अक्ष पर प्रति हजार लड़कों के सापेक्ष लड़कियों की स्थिति प्रदर्शित करना है। इसके लिए उचित पैमाना लेकर Y – अक्ष पर मापन के (मानक) विभिन्न स्तर अंकित कर दीजिए। चित्र में 900 तक की संख्या को स्थिर ऊँचाई लिया गया है।
और अगले 100 के लिए 10 (की संख्या) को 1 सेमी से प्रदर्शित किया गया है। - समान चौड़ाई के भिन्न क्षेत्रों के प्रत्येक 1000 पर लड़कियों की संख्या को आयतों द्वारा प्रदर्शित कीजिए। प्रति हजार पर लड़कियों की संख्या आयतों की ऊँचाइयों को व्यक्त करती है।
- प्रत्येक आयत की चौड़ाई के ऊपरी भाग पर सम्बन्धित लड़कियों की संख्या अंकित कीजिए और आयतों को उचित शेड या रंग भरकर सुस्पष्ट कीजिए।
(ii) आलेख के निष्कर्ष
- अन्य जातियों की अपेक्षा अनुसूचित जनजाति में (प्रति हजार लड़कों पर) लड़कियों की संख्या अधिक है।
- गैर-पिछड़े जिलों के सापेक्ष पिछड़े जिलों में (प्रति हजार लड़कों पर) लड़कियों की संख्या अधिक है।
- शहरी क्षेत्रों की अपेक्षा ग्रामीण क्षेत्रों में (प्रति हजार लड़कों पर) लड़कियों की संख्या अधिक है।
प्रश्न 3. एक राज्य के विधान सभा के चुनाव में विभिन्न राजनैतिक पार्टियों द्वारा जीती गई सीटों के परिणाम नीचे दिए गए हैं :
(i) मतदान के परिणामों को निरूपित करने वाला एक दण्ड आलेख खींचिए।
(ii) किस राजनैतिक पार्टी ने अधिकतम सीटें जीती हैं?
हल :
(i) बनाने की विधि
- X – अक्ष ब Y – अक्ष खींचिए।
- एक-दूसरे के बीच समान और उचित रिक्त स्थान छोड़कर समान चौड़ाई के आधारों द्वारा X – अक्ष पर राजनैतिक पार्टियों को प्रदर्शित कीजिए।
- Y-अक्ष पर राजनैतिक पार्टियों द्वारा जीती गई सीटें प्रदर्शित करना है। पैमाना : 1 सेमी = 10 सीटें लेकर सीटों के लिए मापन स्केल अंकित कीजिए।
- विभिन्न पार्टियों के लिए निर्धारित एवं प्रदर्शित आधारों पर उनमें से प्रत्येक के लिए जीती गई सीटों की संख्या के सापेक्ष ऊँचाई के आयत बनाइए।
- आयतों की ऊपरी चौड़ाई पर जीती गई सीटों की संख्या अंकित कीजिए। दण्ड आलेख पूर्ण हो गया।
(ii) चूँकि जीती गई सीटों की संख्या आयतों की ऊँचाई के अनुक्रमानुपाती है और पार्टी A के लिए प्रदर्शित आयत की ऊँचाई सबसे अधिक है। अतः पार्टी A ने सबसे अधिक सीटें जीती हैं।
प्रश्न 4. एक पौधे की 40 पत्तियों की लम्बाइयाँ एक मिलीमीटर तक शुद्ध मापी गई हैं और प्राप्त आँकड़ों को निम्नलिखित सारणी में निरूपित किया गया है।
(i) दिए हुए आँकड़ों को निरूपित करने वाला एक आयतचित्र खींचिए।
(ii) क्या इन्हीं आँकड़ों को निरूपित करने वाला कोई अन्य उपयुक्त आलेख है?
(iii) क्या यह सही निष्कर्ष है कि 153 मिलीमीटर लम्बाई वाली पत्तियों की संख्या सबसे अधिक है? क्यों?
हल :
(i) आयत चित्र बनाने की विधि
- दिए गए आँकड़ों के वर्ग असतत हैं। इन्हें सतत बनाइए।
किसी वर्ग की ऊपरी सीमा तथा इसके क्रमागत वर्ग की निम्न सीमा का अन्तर = 127 – 126 = 1
इस अन्तर का आधा = = 0.5
अब, प्रत्येक वर्ग की निम्न सीमा में से 0.5 घटाते हैं तथा ऊपरी सीमा में 0.5 जोड़ते हैं। इस प्रकार हमें निम्न वर्ग–अन्तराल प्राप्त होते हैं। - X – अक्ष व Y – अक्ष खींचिए।
- X – अक्ष पर (सतत) वर्ग प्रदर्शित कीजिए। दो क्रमागत वर्गों के बीच रिक्त स्थान न छोड़िए।
- Y – अक्ष पर उचित पैमाना लेकर (पत्तियों की लम्बाई) बारम्बारताओं के लिए मापन स्केल अंकित कीजिए। वर्गों पर पत्तियों की संख्या के अनुपात में ऊँचाई व्यक्त करने वाले आयत प्रदर्शित कीजिए। उचित पैमाने का प्रयोग कीजिए। आवश्यक गणना अग्रवत् कीजिए :
- आयतों के ऊपरी सिरों पर सम्बन्धित वर्गों की बारम्बारताएँ अंकित कीजिए।
(ii) हाँ, इन आँकड़ों को बारम्बारता बहुभुज द्वारा भी निरूपित किया जा सकता है।
(iii) वर्ग (144.5 – 153.5) मिमी के अन्तर्गत 153 मिमी आता है;
अत: इस वर्ग की बारम्बारता सबसे अधिक है परन्तु यह आवश्यक नहीं है कि 153 मिमी लम्बाई की पत्तियों की संख्या सबसे अधिक हो। क्योंकि यह अधिकतम बारम्बारता 144.5 मिमी से 153.5 मिमी तक के पूरे वर्ग का प्रतिनिधित्व करती है न कि मात्र 153 मिमी का।
प्रश्न 5. नीचे की सारणी में 400 निऑन लैम्पों के जीवन-काल दिए गए हैं :
(i) एक आयतचित्र की सहायता से दी हुई सूचनाओं को निरूपित कीजिए।
(ii) कितने लैम्पों के जीवन-काल 700 घण्टों से अधिक हैं?
हल :
(i) बनाने की विधि
- X-अक्ष पर जीवन-काल वर्गों को प्रदर्शित कीजिए जिनमें प्रत्येक की चौड़ाई 100 है।
- Y-अक्ष पर लैम्पों की संख्या को प्रदर्शित कीजिए।
- वर्गों की चौड़ाई को आधार मानकर और लैम्पों की संख्या को ऊँचाई मानकर लिए गए पैमानों के सापेक्ष आयत बनाइए और आयतचित्र आलेख को पूरा कीजिए।
(ii) वर्ग (700-800), (800-900) व (900-1000), 700 से अधिक घण्टों का प्रतिनिधित्व करते हैं।
700 घण्टों से अधिक जीवन-काल वाले लैम्पों की संख्या = सम्बन्धित वर्षों की बारम्बारताओं को योग = 74 + 62 + 48 = 184 लैम्प।
प्रश्न 6. नीचे की दो सारणियों में प्राप्त किए गए अंकों के अनुसार दो सेक्शनों के विद्यार्थियों का बण्टन दिया गया है।
दो बारम्बारता बहुभुजों की सहायता से एक ही आलेख पर दोनों सेक्शनों के विद्यार्थियों के प्राप्तांक निरूपित कीजिए। दोनों बहुभुजों का अध्ययन करके दोनों सेक्शनों के निष्पादनों की तुलना कीजिए।
हल :
बारम्बारता बहुभुज बनाने की विधि
(1) X-अक्ष व Y-अक्ष खींचे।
(2) X-अक्ष पर दिए हुए अंक वर्ग प्रदर्शित किए।
(3) Y-अक्ष पर पैमाना : 1 सेन्टीमीटर = 2 विद्यार्थी के अनुरूप मापन स्केल अंकित किया।
(4) प्रथम वर्ग के ठीक पूर्व और अन्तिम वर्ग के ठीक पश्चात् एक-एक वर्ग की कल्पना की और इनके मध्य-बिन्दु A तथा G अंकित किए।
(5) दिए गए वर्गों के सापेक्ष उनके मध्य-बिन्दु क्रमशः ज्ञात किए।
(6) प्रत्येक वर्ग के मध्य-बिन्दु को भुज और बारम्बारता को कोटि मान कर वर्ग के सापेक्ष एक-एक बिन्दु ज्ञात किया जैसा कि नीचे दिखाया गया है।
(7) दोनों सेक्शनों A और B के लिए बिन्दुओं B, C, D, E, F वे B’, C’, D’, E’, F’ को आलेखित किया।
(8) इन्हें क्रम से मिलाकर सेक्शन A के लिए बारम्बारता बहुभुज आलेख A B C D E F G A खींचा और सेक्शन B के लिए बारम्बारता बहुभुज आलेख A B C’ D’ E’ F’ G A खींचा। आलेखों के अध्ययन से निष्कर्ष
दोनों आलेखों में सेक्शन A के उच्च स्तर के बिन्दु D, E, F सेक्शन B के समान स्तरीय बिन्दुओं D’, E’, F’ से अधिक ऊँचाई पर हैं।
अतः सेक्शन A का सेक्शन B के सापेक्ष परिणाम उन्नत है।
प्रश्न 7. एक क्रिकेट मैच में दो टीमों A और B द्वारा प्रथम 60 गेंदों में बनाए गए रन नीचे दिए गए हैं :
बारम्बारता बहुभुजों की सहायता से एक ही आलेख पर दोनों टीमों के आँकड़े निरूपित कीजिए।
हल :
बारम्बारता बहुभुज आलेख बनाने की विधि
- X-अक्ष व Y-अक्ष खींचे।
- दिए हुए वर्ग असतत हैं। प्रत्येक वर्ग की निम्न सीमा में 0.5 घटाकर और उपरि सीमा में 0.5 जोड़कर इन्हें सतत बनाया।
किसी वर्ग की ऊपरी सीमा तथा उसके क्रमागते वर्ग की निम्न सीमा का अन्तर = 7 – 6 = 1
इस अन्तर का आधा = = 0.5 है। - X-अक्ष पर वर्गों की सीमाओं को प्रदर्शित किया।
- Y-अक्ष पर टीमों द्वारा बनाए गए रनों को प्रदर्शित करना है। मापन स्केल अंकित किया।
- प्रथम वर्ग (0.5-6.5) के ठीक पूर्व एक कल्पित वर्ग लेकर उसका मध्य-बिन्दु A ज्ञात किया।
- अन्तिम वर्ग (54.5- 60.5) के ठीक पश्चात् एक कल्पित वर्ग लेकर उसका मध्य-बिन्दु L ज्ञात किया।
- प्रत्येक वर्ग के मध्य-बिन्दु क्रमशः 3.5, 9.5, 15.5, 21.5, 27.5, 33.5, 39.5, 45.5, 51.5 व 57.5 ज्ञात किए।
- टीम A व टीम B के लिए अलग-अलग प्रत्येक वर्ग के मध्य बिन्दु और उसकी बारम्बारता के सापेक्ष एक-एक बिन्दु ज्ञात किया जैसा कि सारणी में दिखाया गया है।
- टीम A के लिए बिन्दुओं B, C, D, E, F, G, H, I, J, K का आलेखन किया।
- इन्हें क्रम से मिलाकर टीम A के लिए बारम्बारता बहुभुज आलेख A B C D E F G H I J K L A प्राप्त किया।
- टीम B के लिए बिन्दुओं B, C, D, E, F, G’, H’, I’, J, K’ का आलेखन किया।
- इन्हें क्रम से मिलाकर टीम B के लिए बारम्बारता बहुभुज A B C D E F G H I J K L A प्राप्त किया।
प्रश्न 8. एक पार्क में खेल रहे विभिन्न आयु वर्गों के बच्चों की संख्या का एक यादृच्छिक सर्वेक्षण (random survey) करने पर निम्नलिखित आँकड़े प्राप्त हुए है।
उपर्युक्त आँकड़ों को निरूपित करने वाला एक आयतचित्र खींचिए।
हल :
बनाने की विधि
- X-अक्ष तथा Y-अक्ष खींचा।
- X-अक्ष पर आयु-वर्ग (1-2), (2-3), (3-5), (5-7), (7-10), (10-15) तथा (15-17) प्रदर्शित किया।
- यहाँ वर्गों की चौड़ाइयाँ क्रमशः 1,1, 2, 2, 3, 5 व 2 अर्थात असमान हैं जिसमें न्यूनतम चौड़ाई 1 है।
- वर्गों की चौड़ाई के सापेक्ष आयतों की लम्बाई के लिए एक सारणी निम्नवत् बनाई।
- प्रत्येक वर्ग की चौड़ाई पर उसके लिए आगणित लम्बाई का आयत बनाकर अभीष्ट आयतचित्र प्राप्त किया।
प्रश्न 9. एक स्थानीय टेलीफोन निर्देशिका से 100 कुलनाम (surname) यदृच्छया लिए गए और उनसे अंग्रेजी वर्णमाला के अक्षरों की संख्या का निम्न बारम्बारता बण्टन प्राप्त किया गया।
(i) दी हुई सूचनाओं को निरूपित करने वाला एक आयतचित्र खींचिए।
(ii) वह वर्ग अन्तराल बताइए जिसमें अधिकतम संख्या में कुलनाम हैं।
हल :
(i) बनाने की विधि
- X-अक्ष तथा Y-अक्ष खींचे।
- X-अक्ष पर दिए हुए वर्ग (1 – 4), (4 – 6), (6 – 8), (8 – 12) व (12 – 20) प्रदर्शित किए।
- यहाँ वर्गों की चौड़ाई परिवर्ती अर्थात 3, 2, 2, 4 व 8 है। न्यूनतम चौड़ाई वाला वर्ग 4-6 अथवा 6-8 है जिसकी चौड़ाई 2 है।
- वर्गों की दी गई बारम्बारता के सापेक्ष आयतों की लम्बाई के लिए सारणी निम्नवत् बनाई।
- प्रत्येक वर्ग चौड़ाई पर उसके आगणित लम्बाई के आयत बनाए। इस प्रकार अभीष्ट आयतचित्र प्राप्त हुआ।
(ii) सारणी से स्पष्ट है कि वर्ग अन्तराल (6 – 8) में अधिकतम अर्थात 44 कुलनाम हैं।
प्रश्नावली 14.4
प्रश्न 1. एक टीम ने फुटबॉल के 10 मैचों में निम्नलिखित गोल किए :
2, 3, 4, 5, 0, 1, 3, 3, 4, 3
इन गोलों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
हल : टीम द्वारा फुटबॉल के 10 मैचों में किए गए गोल :
2, 3, 4, 5, 0, 1, 3, 3, 4, 3
यहाँ 0,1, 2 व 5 की बारम्बारता = 1 है;
4 की बारम्बारता = 2 है;
3 की बारम्बारता = 4 है।
स्पष्ट है कि 3 की बारम्बारता सर्वाधिक है।
बहुलक = 3
अतः माध्य = 2: 8; माध्यक = 3 और बहुलक = 3
प्रश्न 2. गणित की परीक्षा में 15 विद्यार्थियों ने (100 में से ) निम्नलिखित अंक प्राप्त किए।
41, 39, 48, 52, 46, 62, 64, 40, 96, 52, 98, 40, 42, 52, 60
इन आँकड़ों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
हल : 15 विद्यार्थियों के प्राप्तांक :
41, 39, 48, 52, 46, 62, 64, 40, 96, 52, 98, 40, 42, 52, 60
प्रश्न 3. निम्नलिखित प्रेक्षणों को आरोही क्रम में व्यवस्थित किया गया है। यदि आँकड़ों का माध्यक 63 हो तो का मान ज्ञात कीजिए।
29, 32, 48, 50, x, x + 2, 72, 78, 84, 95
हल : दिए गए प्रेक्षण आरोही क्रम में व्यवस्थित हैं।
प्रेक्षणों की संख्या N = 10 (सम)
प्रश्न 4. आँकड़ों 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18 का बहुलक ज्ञात कीजिए।
हल :
यहाँ पद 14 की बारम्बारता सर्वाधिक है; अत: बहुलक= 14
प्रश्न 5. निम्नलिखित सारणी से एक फैक्ट्री में काम कर रहे 60 कर्मचारियों का माध्य वेतन ज्ञात कीजिए :
अत: फैक्टरी के 60 कर्मचारियों का माध्य वेतन = 5083.33
प्रश्न 6. निम्न स्थिति पर आधारित एक उदाहरण दीजिए :
(i) माध्य ही केन्द्रीय प्रवृत्ति का उपयुक्त माप है।
(ii) माध्य केन्द्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
All Chapter UP Board Solutions For Class 9 Maths Hindi Medium
—————————————————————————–
All Subject UP Board Solutions For Class 9 Hindi Medium
*************************************************
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
यदि यह UP Board solutions से आपको सहायता मिली है, तो आप अपने दोस्तों को upboardsolutionsfor.com वेबसाइट साझा कर सकते हैं।