In this chapter, we provide UP Board Solutions for Class 9 Maths Chapter 2 Polynomials (बहुपद) for Hindi medium students, Which will very helpful for every student in their exams. Students can download the latest UP Board Solutions for Class 9 Maths Chapter 2 Polynomials (बहुपद) pdf, free UP Board Solutions Class 9 Maths Chapter 2 Polynomials (बहुपद) book pdf download. Now you will get step by step solution to each question. Up board solutions कक्षा 9 गणित पीडीऍफ़
UP Board Solutions for Class 9 Maths Chapter 2 Polynomials (बहुपद)
प्रश्नावली 2.1
प्रश्न 1.
निम्नलिखित व्यंजकों में कौन-कौन एक चर में बहुपद हैं और कौन-कौन नहीं हैं? कारण के साथ अपने उत्तर दीजिए :
प्रश्न 2.
निम्नलिखित में से प्रत्येक में x² का गुणांक लिखिए :
(i) 2 + x² + x
(ii) 2 – x² + x3
(iii) x² + x
(iv) √2 x – 1
हल :
(i) 2 + x² + x में x² का गुणांक = 1
(ii) 2 – x² + x3 में x² का गुणांक = -1
(iii) x² + x में x² का गुणांक =
(iv) √2 x – 1 अर्थात 0.x2 + √2 x – 1 में x² का गुणांक = 0
प्रश्न 3.
35 घात के द्विपद का और 100 घात के एकपदी का एक-एक उदाहरण दीजिए।
प्रश्न 4.
निम्नलिखित बहुपदों में से प्रत्येक बहुपद की घात लिखिए :
(i) 5x3 + 4x² + 7x
(ii) 4 – y²
(iii) 5t – √7
(iv) 3
हल :
(i) 5x3 + 4x² + 7x में चर x की अधिकतम घात = 3
दिए हुए बहुपद की घात= 3
(ii) 4 – y² में चर y की अधिकतम घात = 2
दिए हुए बहुपद की घात = 2
(iii) 5t – √7 में चर है की अधिकतम घात = 1
दिए हुए बहुपद की घात = 1
(iv) 3 एक अचर पद है अर्थात 3.x0
दिए हुए बहुपद की घात = 0
प्रश्न 5.
बताइए कि निम्नलिखित बहुपदों में कौन-कौन बहुपद रैखिक है, कौन-कौन द्विघाती हैं और कौन-कौन त्रिघाती हैं :
(i) x² + x
(ii) x – x3
(iii) y + y² + 4
(iv) 1 + x
(v) 3t
(vi) r²
(vii) 7x3
हल :
(i) बहुपद x² + x में चर x की अधिकतम घात = 2
यह बहुपद द्विघाती है।
(ii) बहुपद x – x3 में चर x की अधिकतम घात = 3
यह बहुपद त्रिघाती है।
(iii) बहुपद y + y² + 4 में चर y की अधिकतम घात = 2
यह बहुपद द्विघाती है।
(iv) बहुपद 1 + x में चर x की अधिकतम घात 1 है।
यह बहुपद रैखिक है।
(v) बहुपद 3t में चर है की अधिकतम घात 1 है।
यह बहुपद रैखिक है।
(vi) बहुपद r² में चर r की अधिकतम घात 2 है।
यह बहुपद द्विघाती है।
(vii) बहुपद 7x3 में चर x की अधिकतम घात 3 है।
यह बहुपद त्रिघाती है।
प्रटनावली 2.2
प्रश्न 1.
निम्नलिखित पर बहुपद 5x – 4x² + 3 के मान ज्ञात कीजिए।
(i) x = 0
(ii) x = – 1
(iii) x = 2
हल :
माना बहुपद p (x) = 5 – 4x² + 3
(i) x = 0 पर बहुपद p (x) का मान
p(0)= 5 (0) – 4 (0)² + 3 = 3
(ii) x = -1 पर बहुपद p (x) का मान
p(-1) = 5 (-1) – 4 (-1)² + 3 = – 5 – 4 + 3 = -6
(iii) x = 2 पर बहुपद p (x) का मान
p(2) = 5 (2) – 4 (2)2 + 3 = 10 – 16 + 3 = -3
प्रश्न 2.
निम्नलिखित बहुपदों में से प्रत्येक बहुपद के लिए p (0), p (1) और p (2) ज्ञात कीजिए :
(i) p(y) = y² – y + 1
(ii) p(t) = 2 + t + 2t² – t3
(iii) p(x) = x3
(iv) p(x) = (x – 1)(x + 1)
हल :
(i) p(y) = y² – y + 1
p (0) = 0² – 0 + 1 = 0 – 0 + 1 = 1
p (1) = 1² – 1 + 1 = 1 – 1 + 1 = 1
p(2) = 2² – 2 + 1 = 4 – 2 + 1 = 3
(ii) p(t) = 2 + t + 2t² – t3
p(0) = 2 + 0 + 2 (0)² – (0)3 = 2
p (1) = 2 + 1 + 2 (1)² – (1)3 = 2 + 1 + 2 – 1 = 4
p (2) = 2 + 2 + 2 (2)² – (2)3 = 2 + 2 + 8 – 8 = 4
(iii) p (x) = x3
p(0) = (0)3 = 0
p (1) = (1)3 = 1
p (2) = (2)3 = 8
(iv) p (x) = (x – 1) (x + 1)
p(0) = (0 – 1) (0 + 1) = (-1) (1) = -1
p (1) = (1 – 1) (1 + 1) = (0) (2) = 0
p (3) = (2 – 1) (2 + 1) = (1) (3) = 3
प्रश्न 3.
सत्यापित कीजिए कि दिखाए गए मान निम्नलिखित स्थितियों में संगत बहुपद के शून्यक हैं :
प्रश्न 4.
निम्नलिखित स्थितियों में से प्रत्येक स्थिति में बहुपद को शून्यक ज्ञात कीजिए :
(i) p(x) = x + 5
(ii) p(x) = x – 5
(iii) p(x) = 2x + 5
(iv) p(x) = 3x – 2
(v) p(x) = 3x
(vi) p(x) = ax; a ≠ 0
(vii) p (x) = cx + d; c ≠ 0, c, d वास्तविक संख्याएँ हैं।
हल :
(i) बहुपद p (x) = x + 5 का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p(x) = 0
⇒ x + 5 = 0
⇒ x = – 5
p(3) को शून्यक = – 5
(ii) बहुपद p (x) = x – 5 को शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p (x) = 0
⇒ x – 5 = 0
⇒ x = 5
p(x) का शून्यक = 5
(iii) बहुपद p (x) = 2x + 5 का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p(3) = 0
⇒ 2x + 5 = 0
⇒ 2x = – 5
⇒ x =
p (x) का शून्यके =
(iv) बहुपद p (x) = 3x – 2 का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p (5) = 0
⇒ 3x – 2 = 0
⇒ 3x = 2
⇒ x =
p (x) का शून्यक =
(v) बहुपद p (x) = 3x का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p (x) = 0
⇒ 3x = 0
⇒ x = 0
p (x) का शून्यक = 0
(vi) बहुपद p(x) = ax; a ≠ 0 का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p(x) = 0
⇒ ax = 0
⇒ x = 0 (a ≠ 0)
p(x) का शून्यक = 0
(vii) बहुपद p (x) = cx + d, c ≠ 0 का शून्यक ज्ञात करने के लिए इसे शून्य के बराबर रखते हैं।
p(x) = 0
cx + d = 0
cx = -d
x = (c ≠ 0)
p (x) का शून्यक =
प्रश्नावली 2.3
प्रश्न 1.
x3 + 3x² + 3x + 1 को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए :
(i) x + 1
(ii) x –
(iii) x
(iv) x + π
(v) 5 + 2x
हल :
माना p (x) = x3 + 3x² + 3x + 1
(i) माना x + 1 = 0 ⇒ x = -1
p (x) को + 1 से भाग देने पर शेषफल
p(- 1) = (-1)3 + 3(-1)² + 3(-1) + 1 = -1 + 3 – 3 + 1 = 0
प्रश्न 2.
x3 – ax² + 6x – a को x – a से भाग देने पर शेषफल ज्ञात कीजिए।
हल :
माना p (x) = x3 – ax² + 6x – a तथा x – a = 0
p (x) को x – a से भाग देने पर शेषफल = (a)3 – a(a)² + 6(a) – a = a3 – a3 + 6a – a = 5a
प्रश्न 3.
जाँच कीजिए कि 7 + 3x, 3x3 + 7x का एक गुणनखण्ड है या नहीं।
हल :
माना p (x) = 3x + 7x
यदि 7 + 3x, p (x) का एक गुणनखण्ड है तो p (x) को 7 + 3x से भाग देने पर शेषफल शून्य होना चाहिए।
माना 7 + 3x = 0 ⇒ 3x = – 7 ⇒ x =
प्रश्नावली 2.4
प्रश्न 1.
बताइए कि निम्नलिखित बहुपदों में से किस बहुपद का एक गुणनखण्ड (x + 1) है।
(i) x3 + x2 + x + 1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 – x2 – (2 + √2) x + √2
प्रश्न 2.
गुणनखण्ड प्रमेय लागू करके बताइए कि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में g (x), p (x) का एक गुणनखण्ड है या नहीं :
(i) p(x) = 2x3 + x2 – 2x – 1, g (x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g (3) = x + 2
(iii) p(x) = x3 – 4x2 + x + 6, g (x) = x – 3
प्रश्न 3.
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में (x – 1), p (x) का एक गुणनखण्ड हो :
(i) p(3) = x2 + x + k
(ii) p(x) = 2x2 + kx + √2
(iii) p(x) = kx2 – √2 x + 1
(iv) p(x) = kx2 – 3x + k
प्रश्न 4.
गुणनखण्ड ज्ञात कीजिए :
(i) 12x2 – 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x – 6
(iv) 3x2 – x – 4
प्रश्न 5.
गुणनखण्ड ज्ञात कीजिए :
(i) x3 – 2x2 – x + 2
(ii) x3 – 3x2 – 9x – 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 – 2y – 1
प्रश्नावली 2.5
प्रश्न 1.
उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए :
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(iv) (y2 + ) (y2 – )
(v) (3 – 2x) (3 + 2x)
प्रश्न 2.
सीधे गुणा किए बिना निम्नलिखित गुणनफलों के मान ज्ञात कीजिए :
(i) 103 x 107
(ii) 95 x 96
(iii) 104 x 96
प्रश्न 3.
उपयुक्त सर्वसमिकाएँ प्रयोग करके निम्नलिखित का गुणनखण्डन कीजिए :
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y + 1
(iii) x2 –
प्रश्न 4.
उपयुक्त सर्वसमिकाओं का प्रयोग करके निम्नलिखित में से प्रत्येक का प्रसार कीजिए :
प्रश्न 5.
गुणनखण्डन कीजिए :
प्रश्न 6.
निम्नलिखित घनों को प्रसारित रूप में लिखिए :
प्रश्न 7.
उपयुक्त सर्वसमिकाएँ प्रयोग करके निम्नलिखित के मान ज्ञात कीजिए :
(i) (99)3
(ii) (102)3
(iii) (998)3
प्रश्न 8.
निम्नलिखित में से प्रत्येक का गुणनखण्डन कीजिए।
प्रश्न 9.
सत्यापित कीजिए :
प्रश्न 10.
निम्नलिखित में से प्रत्येक का गुणनखण्डन कीजिए
प्रश्न 11.
गुणनखण्ड कीजिए : 27x3 + y3 + z3 – 9xyz
प्रश्न 12.
सत्यापित कीजिए :
प्रश्न 13.
यदि x + y + z = 0 हो तो दिखाइए कि x3 + y3 + z3 = 3xyz
प्रश्न 14.
घनों का परिकलन किए बिना निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए :
प्रश्न 15.
नीचे दिए गए आयतों, जिनमें उनके क्षेत्रफल दिए गए हैं, में से प्रत्येक की लम्बाई और चौड़ाई के लिए सम्भव व्यंजक दीजिए।
(i) क्षेत्रफल : 25a2 – 35a + 12
(ii) क्षेत्रफल : 35y2 + 13y – 12
प्रश्न 16.
घनाभों (Cuboids), जिनके आयतन नीचे दिए गए हैं, की विमाओं के लिए सम्भव व्यंजक क्या हैं :
(i) आयतन : 3x2 – 12x
(ii) आयतन : 12ky2 + 8ky – 20k
All Chapter UP Board Solutions For Class 9 Maths Hindi Medium
—————————————————————————–
All Subject UP Board Solutions For Class 9 Hindi Medium
*************************************************
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
यदि यह UP Board solutions से आपको सहायता मिली है, तो आप अपने दोस्तों को upboardsolutionsfor.com वेबसाइट साझा कर सकते हैं।